7 research outputs found

    Development of A New Local Mineral Admixture for Enhancing Concrete properties

    Get PDF
    Proceeding from the saying of our God almighty on his book, the holy Qur'an: "Then ignite for me, O Hāmān, (a fire) upon the clay (From which bricks are made) and make for me a tower....". Therefore, this paper presents an investigation on, using calcined ball-clay (CBC) as mineral pozzolanic admixture for concrete production. CBC is obtained from calcination processes for local ball-clay at specified conditions. To evaluate ball-clay calcination process, various temperatures (600–900 ÂșC) and burning durations (2, 3 and 4 hours) are used and the optimum temperature and burning time for calcination are assessed by strength activity index at age of 28 days. The hardened properties development of concrete mixtures containing 0%, 10%, 15% and 20% CBC as cement partial replacement are analysed in terms of compressive strength at 7, 28, 90 and 180 days, water absorption, ultra-sonic pulse velocity and electrical resistivity. In addition, microstructure by XRD of the cement pastes incorporating CBC was studied. The results showed that the optimum calcination process to obtain CBC are carried out at temperature 800 °C for 4 hours. The replacement of cement by 10% of CBC is an optimal dosage for concrete mixtures since it achieved an increase of compressive strength by 28% as compared with control one. Therefore, adding CBC can lead to a beneficial utilization of natural local resources, which reduces energy consumption and minimizes CO2 footprint during the manufacturing of cement concrete, thus, concrete can become an eco-friendly and sustainable material

    Accelerating Novel Candidate Gene Discovery in Neurogenetic Disorders via Whole-Exome Sequencing of Prescreened Multiplex Consanguineous Families

    Get PDF
    Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function

    The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach

    No full text
    Allogeneic haematopoietic stem-cell transplantation (HSCT) is frequently applied as part of the treatment in patients with acute myeloid leukaemia (AML) in their first or subsequent remission. Allogeneic HSCT reduces relapse, but nonrelapse mortality and morbidity might counterbalance this beneficial effect. Here, we review recent studies reporting new disease-specific prognostic markers, in addition to allogeneic-HSCT-related risk factors, which can be assessed at specific time points during treatment. We propose risk assessment as a dynamic process during treatment, incorporating both disease-related and transplant-related factors for the decision to proceed either to allogeneic HSCT or to apply a nontransplant strategy. We suggest that allogeneic HSCT might be favoured if the projected disease-free survival is expected to improve by at least 10% based on an individual's risk assessment. The approach requires initial disease risk assessment, identifying a sibling or unrelated donor soon after diagnosis and the incorporation of time-dependent risk factors, all within the context of an integrated therapeutic management approach

    Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome

    No full text
    The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra -rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2) -related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi -quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss -of -function (LoF) impact of the disease -associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTPbinding proteins in CNS development across species
    corecore