2 research outputs found

    Simulations of Depth-Averaged Streamwise Velocity of Meandering Compound Channel using TELEMAC Modules

    No full text
    Capabilities of numerical tools to simulate fluid problems significantly depend on its methods to solve for the Navier-Stokes equations. Different dimensional computing tools using the same horizontal meshes were used to simulate flow conditions inside non- and vegetation meandering compound channel. Both tools give good agreement for simulations of depth-averaged streamwise velocity inside the main channel, but its capabilities vary significantly for simulations on floodplains. Lower relative depth recorded a higher percentage of errors than flow with higher relative depth. Vegetation along the main channel increased the flows complexity especially in the area near the vegetation thus reducing the simulation capabilities of the computing tools. Simulations work by TELEMAC-3D significantly better in the areas with highly dimensional and turbulence conditions. TELEMAC-2D is still useful because of its simplicity and lower computing time and resources required

    Simulations of Depth-Averaged Streamwise Velocity of Meandering Compound Channel using TELEMAC Modules

    No full text
    Capabilities of numerical tools to simulate fluid problems significantly depend on its methods to solve for the Navier-Stokes equations. Different dimensional computing tools using the same horizontal meshes were used to simulate flow conditions inside non- and vegetation meandering compound channel. Both tools give good agreement for simulations of depth-averaged streamwise velocity inside the main channel, but its capabilities vary significantly for simulations on floodplains. Lower relative depth recorded a higher percentage of errors than flow with higher relative depth. Vegetation along the main channel increased the flows complexity especially in the area near the vegetation thus reducing the simulation capabilities of the computing tools. Simulations work by TELEMAC-3D significantly better in the areas with highly dimensional and turbulence conditions. TELEMAC-2D is still useful because of its simplicity and lower computing time and resources required
    corecore