16 research outputs found

    Neodymium Isotope Geochemistry of a Subterranean Estuary

    Get PDF
    Rare earth elements (REE) and Nd isotope compositions of surface and groundwaters from the Indian River Lagoon in Florida were measured to investigate the influence of submarine groundwater discharge (SGD) on these parameters in coastal waters. The Nd flux of the terrestrial component of SGD is around 0.7±0.03 ÎŒmol Nd/day per m of shoreline across the nearshore seepage face of the subterranean estuary. This translates to a terrestrial SGD Nd flux of 4±0.2 mmol/day for the entire 5,880 m long shoreline of the studied portion of the lagoon. The Nd flux from bioirrigation across the nearshore seepage face is 1±0.05 ÎŒmol Nd/day per m of shoreline, or 6±0.3 mmol/day for the entire shoreline. The combination of these two SGD fluxes is the same as the local, effective river water flux of Nd to the lagoon of 12.7±5.3 mmol/day. Using a similar approach, the marine-sourced SGD flux of Nd is 31.4±1.6 ÎŒmol Nd/day per m of shoreline, or 184±9.2 mmol/day for the investigated portion of the lagoon, which is 45 times higher than the terrestrial SGD Nd flux. Terrestrial-sourced SGD has an ΔNd(0) value of −5±0.42, which is similar to carbonate rocks (i.e., Ocala Limestone) from the Upper Floridan Aquifer (−5.6), but more radiogenic than the recirculated marine SGD, for which ΔNd(0) is −7±0.24. Marine SGD has a Nd isotope composition that is identical to the ΔNd(0) of Fe(III) oxide/oxyhydroxide coated sands of the surficial aquifer (−7.15±0.24 and −6.98±0.36). These secondary Fe(III) oxides/oxyhydroxides formed during subaerial weathering when sea level was substantially lower during the last glacial maximum. Subsequent flooding of these surficial sands by rising sea level followed by reductive dissolution of the Fe(III) oxide/oxyhydroxide coatings can explain the Nd isotope composition of the marine SGD component. Surficial waters of the Indian River Lagoon have an ΔNd(0) of −6.47±0.32, and are a mixture of terrestrial and marine SGD components, as well as the local rivers (−8.63 and −8.14). Nonetheless, the chief Nd source is marine SGD that has reacted with Fe(III) oxide/oxyhydroxide coatings on the surficial aquifer sands of the subterranean estuary

    Multistatic micro‐Doppler radar feature extraction for classification of unloaded/loaded micro‐drones

    Get PDF
    This paper presents the use of micro-Doppler signatures collected by a multistatic radar to detect and discriminate between micro-drones hovering and flying while carrying different payloads, which may be an indication of unusual or potentially hostile activities. Different features have been extracted and tested, namely features related to the Radar Cross Section of the micro-drones, as well as the Singular Value Decomposition (SVD) and centroid of the micro-Doppler signatures. In particular, the added benefit of using multistatic information in comparison with conventional radar is quantified. Classification performance when identifying the weight of the payload that the drone was carrying while hovering was found to be consistently above 96% using the centroid-based features and multistatic information. For the non-hovering scenarios classification results with accuracy above 95% were also demonstrated in preliminary tests in discriminating between three different payload weights

    Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb

    No full text
    Sinc-shaped temporal pulse trains have a spectrally efficient, rectangular Nyquist spectrum. We demonstrate the simultaneous and reconfigurable optical generation of multiple Nyquist-shaped wavelength-division-multiplexed (WDM) channels having temporal sinc-shaped pulse trains as data carriers. The channels are generated through the insertion of coherent lines using cascaded continuous-wave amplitude modulation around the spectral lines of a microresonator-based Kerr optical frequency comb. For each of nine Kerr frequency comb lines, we insert sub-groups of uniform and coherent lines to generate nine WDM channels. The deviations from ideal Nyquist pulses for the nine channels at repetition rates of 6 and 2 GHz are between 4.2%-6.1% and 2%-4.5%, respectively. Each WDM channel is modulated with on-off keying (OOK) at 6 Gbit/s. In addition, we show the reconfigurability of this method by varying the number of WDM channels, the generated sinc-shaped pulse train repetition rates, the duration, and the number of zero-crossings. (C) 2019 Optical Society of Americ
    corecore