428 research outputs found
Caracterización y biocompatibilidad de matrices de colágeno para uso en regeneración ósea
El colágeno, la proteína más abundante del hueso, juega un rol fundamental en la integridad biológica y estructural del esqueleto. Previamente se han usado membranas de colageno sin un orden molecular, para fabricar matrices para la regeneración del tejido óseo. El colágeno es así un candidato natural para mejorar o reemplazar tejidos u órganos dañados. El objetivo del presente trabajo es caracterizar matrices de colágeno ordenado o no (con una distribución al azar) y estudiar su biocompatiblidad con células óseas en cultivo. Se estilizó colágeno extraído del tendón de Aquiles bovino, nativo, obtenido en nuestro laboratorio con un grado de pureza de un 98% [Ruderman et al., 2007]. Se fabricaron matrices de colágeno no ordenado y de colágeno ordenado según patentes. Las características de la superficie de membranas fueron observadas por SEM y microscopia óptica (coloración de Sirius red). Las membranas ordenadas mostraron una topografía típica en forma de canales en correlación con un ordenamiento molecular. Se evaluó la biocompatibilidad de células osteoblásticas y macrófagos murinos crecidos sobre los dos tipos de películas de colágeno (No ordenado y ordenado). Se estudió la adhesión, proliferación (conteo de células teñidas con Giemsa) y diferenciación al fenotipo osteoblasto (expresión de fosfatasa alcalina y nódulos de mineralización). Se encontró que las células (osteoblasticas y macrófagos) crecidas sobre las matrices de colágeno ordenado se adhieren mas (1.5-1.7 veces) y crecen mejor (2.3–2.6 veces) que sobre las matrices de colágeno no ordenado. Macrófagos Raw 264.7 teñidos con naranja de acridina revelaron mayor cantidad de células muertas sobra las matrices de colágeno no ordenado. Preosteoblástos MC3T3E1 (4 semanas en medio osteogénico) expresaron más fosfatasa alcalina (2.6 veces) y mineral en la matriz de colágeno. Los estudios preliminares sugieren que las matrices preparadas en base a colágeno natural podrían ser aplicadas en la regeneración del tejido
Hydrogen Bonding of Carboxylic Acids in Aqueous Solutions—UV Spectroscopy, Viscosity, and Molecular Simulation of Acetic Acid
The UV spectra of aqueous acetic acid solutions up to 2M were investigated. At these wavelengths, the carboxylic acids exhibit an absorption peak, attributed to the C=O group, which shifts when hydrogen bonds are formed.. The measured spectra were best fitted to several bands, either of Gaussian or Lorentzian shape, which can be explained as several types of structural units formed by hydrogen bonds established between acetic acid and water molecules and between acetic acid molecules themselves. Molecular dynamics simulation of these mixtures was also performed, confirming the occurrence of several types of hydrogen bonds and showing the presence of dimers at higher concentrations. The viscosity and density of these solutions were also measured at different concentrations and temperatures. These results give a more complete picture of the hydrogen bond network of the system.Instituto de Física de Líquidos y Sistemas Biológico
The Force-Velocity Relation for Growing Biopolymers
The process of force generation by the growth of biopolymers is simulated via
a Langevin-dynamics approach. The interaction forces are taken to have simple
forms that favor the growth of straight fibers from solution. The
force-velocity relation is obtained from the simulations for two versions of
the monomer-monomer force field. It is found that the growth rate drops off
more rapidly with applied force than expected from the simplest theories based
on thermal motion of the obstacle. The discrepancies amount to a factor of
three or more when the applied force exceeds 2.5kT/a, where a is the step size
for the polymer growth. These results are explained on the basis of restricted
diffusion of monomers near the fiber tip. It is also found that the mobility of
the obstacle has little effect on the growth rate, over a broad range.Comment: Latex source, 9 postscript figures, uses psfig.st
Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells
Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by theMTT assay and by evaluation of morphological changes in cultured RAW264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure.The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadiumloaded membranes proved to be a better substratum than 0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation). In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering.Laboratorio de Investigación en Osteopatías y Metabolismo Mineral (LIOMM)Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB)Facultad de Ciencias Exacta
Parenteral but Not Enteral Omega‐3 Fatty Acids (Omegaven) Modulate Intestinal Regrowth After Massive Small Bowel Resection in Rats
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141380/1/jpen0503.pd
Asymptotics for the number of eigenvalues of three-particle Schr\"{o}dinger operators on lattices
We consider the Hamiltonian of a system of three quantum mechanical particles
(two identical fermions and boson)on the three-dimensional lattice and
interacting by means of zero-range attractive potentials. We describe the
location and structure of the essential spectrum of the three-particle discrete
Schr\"{o}dinger operator being the total quasi-momentum
and the ratio of the mass of fermion and boson.
We choose for the interaction in such a way the system
consisting of one fermion and one boson has a zero energy resonance.
We prove for any the existence infinitely many eigenvalues of the
operator We establish for the number of
eigenvalues lying below the following asymptotics Moreover,
for all nonzero values of the quasi-momentum we establish the
finiteness of the number of eigenvalues of
below the bottom of the essential spectrum and we give an asymptotics for the
number of eigenvalues below zero.Comment: 25 page
Caracterización y biocompatibilidad de matrices de colágeno para uso en regeneración ósea
El colágeno, la proteína más abundante del hueso, juega un rol fundamental en la integridad biológica y estructural del esqueleto. Previamente se han usado membranas de colageno sin un orden molecular, para fabricar matrices para la regeneración del tejido óseo. El colágeno es así un candidato natural para mejorar o reemplazar tejidos u órganos dañados. El objetivo del presente trabajo es caracterizar matrices de colágeno ordenado o no (con una distribución al azar) y estudiar su biocompatiblidad con células óseas en cultivo. Se estilizó colágeno extraído del tendón de Aquiles bovino, nativo, obtenido en nuestro laboratorio con un grado de pureza de un 98% [Ruderman et al., 2007]. Se fabricaron matrices de colágeno no ordenado y de colágeno ordenado según patentes. Las características de la superficie de membranas fueron observadas por SEM y microscopia óptica (coloración de Sirius red). Las membranas ordenadas mostraron una topografía típica en forma de canales en correlación con un ordenamiento molecular. Se evaluó la biocompatibilidad de células osteoblásticas y macrófagos murinos crecidos sobre los dos tipos de películas de colágeno (No ordenado y ordenado). Se estudió la adhesión, proliferación (conteo de células teñidas con Giemsa) y diferenciación al fenotipo osteoblasto (expresión de fosfatasa alcalina y nódulos de mineralización). Se encontró que las células (osteoblasticas y macrófagos) crecidas sobre las matrices de colágeno ordenado se adhieren mas (1.5-1.7 veces) y crecen mejor (2.3–2.6 veces) que sobre las matrices de colágeno no ordenado. Macrófagos Raw 264.7 teñidos con naranja de acridina revelaron mayor cantidad de células muertas sobra las matrices de colágeno no ordenado. Preosteoblástos MC3T3E1 (4 semanas en medio osteogénico) expresaron más fosfatasa alcalina (2.6 veces) y mineral en la matriz de colágeno. Los estudios preliminares sugieren que las matrices preparadas en base a colágeno natural podrían ser aplicadas en la regeneración del tejido.Facultad de Ciencias Exacta
Hydrogen Bonding of Carboxylic Acids in Aqueous Solutions—UV Spectroscopy, Viscosity, and Molecular Simulation of Acetic Acid
The UV spectra of aqueous acetic acid solutions up to 2M were investigated. At these wavelengths, the carboxylic acids exhibit an absorption peak, attributed to the C=O group, which shifts when hydrogen bonds are formed.. The measured spectra were best fitted to several bands, either of Gaussian or Lorentzian shape, which can be explained as several types of structural units formed by hydrogen bonds established between acetic acid and water molecules and between acetic acid molecules themselves. Molecular dynamics simulation of these mixtures was also performed, confirming the occurrence of several types of hydrogen bonds and showing the presence of dimers at higher concentrations. The viscosity and density of these solutions were also measured at different concentrations and temperatures. These results give a more complete picture of the hydrogen bond network of the system.Instituto de Física de Líquidos y Sistemas Biológico
Caracterización y biocompatibilidad de matrices de colágeno para uso en regeneración ósea
El colágeno, la proteína más abundante del hueso, juega un rol fundamental en la integridad biológica y estructural del esqueleto. Previamente se han usado membranas de colageno sin un orden molecular, para fabricar matrices para la regeneración del tejido óseo. El colágeno es así un candidato natural para mejorar o reemplazar tejidos u órganos dañados. El objetivo del presente trabajo es caracterizar matrices de colágeno ordenado o no (con una distribución al azar) y estudiar su biocompatiblidad con células óseas en cultivo. Se estilizó colágeno extraído del tendón de Aquiles bovino, nativo, obtenido en nuestro laboratorio con un grado de pureza de un 98% [Ruderman et al., 2007]. Se fabricaron matrices de colágeno no ordenado y de colágeno ordenado según patentes. Las características de la superficie de membranas fueron observadas por SEM y microscopia óptica (coloración de Sirius red). Las membranas ordenadas mostraron una topografía típica en forma de canales en correlación con un ordenamiento molecular. Se evaluó la biocompatibilidad de células osteoblásticas y macrófagos murinos crecidos sobre los dos tipos de películas de colágeno (No ordenado y ordenado). Se estudió la adhesión, proliferación (conteo de células teñidas con Giemsa) y diferenciación al fenotipo osteoblasto (expresión de fosfatasa alcalina y nódulos de mineralización). Se encontró que las células (osteoblasticas y macrófagos) crecidas sobre las matrices de colágeno ordenado se adhieren mas (1.5-1.7 veces) y crecen mejor (2.3–2.6 veces) que sobre las matrices de colágeno no ordenado. Macrófagos Raw 264.7 teñidos con naranja de acridina revelaron mayor cantidad de células muertas sobra las matrices de colágeno no ordenado. Preosteoblástos MC3T3E1 (4 semanas en medio osteogénico) expresaron más fosfatasa alcalina (2.6 veces) y mineral en la matriz de colágeno. Los estudios preliminares sugieren que las matrices preparadas en base a colágeno natural podrían ser aplicadas en la regeneración del tejido.Facultad de Ciencias Exacta
Caracterización y biocompatibilidad de matrices de colágeno para uso en regeneración ósea
El colágeno, la proteína más abundante del hueso, juega un rol fundamental en la integridad biológica y estructural del esqueleto. Previamente se han usado membranas de colageno sin un orden molecular, para fabricar matrices para la regeneración del tejido óseo. El colágeno es así un candidato natural para mejorar o reemplazar tejidos u órganos dañados. El objetivo del presente trabajo es caracterizar matrices de colágeno ordenado o no (con una distribución al azar) y estudiar su biocompatiblidad con células óseas en cultivo. Se estilizó colágeno extraído del tendón de Aquiles bovino, nativo, obtenido en nuestro laboratorio con un grado de pureza de un 98% [Ruderman et al., 2007]. Se fabricaron matrices de colágeno no ordenado y de colágeno ordenado según patentes. Las características de la superficie de membranas fueron observadas por SEM y microscopia óptica (coloración de Sirius red). Las membranas ordenadas mostraron una topografía típica en forma de canales en correlación con un ordenamiento molecular. Se evaluó la biocompatibilidad de células osteoblásticas y macrófagos murinos crecidos sobre los dos tipos de películas de colágeno (No ordenado y ordenado). Se estudió la adhesión, proliferación (conteo de células teñidas con Giemsa) y diferenciación al fenotipo osteoblasto (expresión de fosfatasa alcalina y nódulos de mineralización). Se encontró que las células (osteoblasticas y macrófagos) crecidas sobre las matrices de colágeno ordenado se adhieren mas (1.5-1.7 veces) y crecen mejor (2.3–2.6 veces) que sobre las matrices de colágeno no ordenado. Macrófagos Raw 264.7 teñidos con naranja de acridina revelaron mayor cantidad de células muertas sobra las matrices de colágeno no ordenado. Preosteoblástos MC3T3E1 (4 semanas en medio osteogénico) expresaron más fosfatasa alcalina (2.6 veces) y mineral en la matriz de colágeno. Los estudios preliminares sugieren que las matrices preparadas en base a colágeno natural podrían ser aplicadas en la regeneración del tejido.Facultad de Ciencias Exacta
- …