84 research outputs found

    Imaging-SIMS (Secondary Ion Mass Spectroscopy) Studies of Advanced Materials

    Get PDF
    This article describes the application of scanning ion microprobe (SIM) microanalysis for the characterization of advanced engineered materials. In conjunction with secondary ion mass spectrometry (SIMS), scanning ion microprobes can image elemental distributions over surfaces with high lateral resolution (50-100 nm). With this technique, most elements, including isotopes, can be detected with good sensitivity. The principles and instrumentation associated with the SIM/SIMS technique are briefly described and ongoing developments are outlined. The analytical capabilities of the technique are illustrated by case studies of aluminum-lithium alloys, zinc oxide varistors, aluminum matrix composites, and photographic materials

    Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    Full text link
    We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2's electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced

    Regulation of peripheral blood flow in Complex Regional Pain Syndrome: clinical implication for symptomatic relief and pain management

    Get PDF
    Background. During the chronic stage of Complex Regional Pain Syndrome (CRPS), impaired microcirculation is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Several mechanisms may be responsible for the ischemia and pain in chronic cold CPRS. Discussion. The diminished blood flow may be caused by either sympathetic dysfunction, hypersensitivity to circulating catecholamines, or endothelial dysfunction. The pain may be of neuropathic, inflammatory, nociceptive, or functional nature, or of mixed origin. Summary. The origin of the pain should be the basis of the symptomatic therapy. Since the difference in temperature between both hands fluctuates over time in cold CRPS, when in doubt, the clinician should prioritize the patient's report of a persistent cold extremity over clinical tests that show no difference. Future research should focus on developing easily applied methods for clinical use to differentiate between central and peripheral blood flow regulation disorders in individual patients

    Some trends in the dynamics of the tax system of Kyrgyzstan

    No full text
    Available from British Library Document Supply Centre-DSC:7742.64435(98/3) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Some trends in the dynamics of the tax system of Kyrgyzstan

    No full text
    Available from British Library Document Supply Centre-DSC:7742.64435(98/3) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
    corecore