29 research outputs found

    Comparing genomic prediction accuracy from purebred, crossbred and combined purebred and crossbred reference populations in sheep

    Get PDF
    BACKGROUND: The accuracy of genomic prediction depends largely on the number of animals with phenotypes and genotypes. In some industries, such as sheep and beef cattle, data are often available from a mixture of breeds, multiple strains within a breed or from crossbred animals. The objective of this study was to compare the accuracy of genomic prediction for several economically important traits in sheep when using data from purebreds, crossbreds or a combination of those in a reference population. METHODS: The reference populations were purebred Merinos, crossbreds of Border Leicester (BL), Poll Dorset (PD) or White Suffolk (WS) with Merinos and combinations of purebred and crossbred animals. Genomic breeding values (GBV) were calculated based on genomic best linear unbiased prediction (GBLUP), using a genomic relationship matrix calculated based on 48 599 Ovine SNP (single nucleotide polymorphisms) genotypes. The accuracy of GBV was assessed in a group of purebred industry sires based on the correlation coefficient between GBV and accurate estimated breeding values based on progeny records. RESULTS: The accuracy of GBV for Merino sires increased with a larger purebred Merino reference population, but decreased when a large purebred Merino reference population was augmented with records from crossbred animals. The GBV accuracy for BL, PD and WS breeds based on crossbred data was the same or tended to decrease when more purebred Merinos were added to the crossbred reference population. The prediction accuracy for a particular breed was close to zero when the reference population did not contain any haplotypes of the target breed, except for some low accuracies that were obtained when predicting PD from WS and vice versa. CONCLUSIONS: This study demonstrates that crossbred animals can be used for genomic prediction of purebred animals using 50 k SNP marker density and GBLUP, but crossbred data provided lower accuracy than purebred data. Including data from distant breeds in a reference population had a neutral to slightly negative effect on the accuracy of genomic prediction. Accounting for differences in marker allele frequencies between breeds had only a small effect on the accuracy of genomic prediction from crossbred or combined crossbred and purebred reference populations

    Genomic prediction from observed and imputed high-density ovine genotypes

    Get PDF
    International audienceAbstractBackground Genomic prediction using high-density (HD) marker genotypes is expected to lead to higher prediction accuracy, particularly for more heterogeneous multi-breed and crossbred populations such as those in sheep and beef cattle, due to providing stronger linkage disequilibrium between single nucleotide polymorphisms and quantitative trait loci controlling a trait. The objective of this study was to evaluate a possible improvement in genomic prediction accuracy of production traits in Australian sheep breeds based on HD genotypes (600k, both observed and imputed) compared to prediction based on 50k marker genotypes. In particular, we compared improvement in prediction accuracy of animals that are more distantly related to the reference population and across sheep breeds.MethodsGenomic best linear unbiased prediction (GBLUP) and a Bayesian approach (BayesR) were used as prediction methods using whole or subsets of a large multi-breed/crossbred sheep reference set. Empirical prediction accuracy was evaluated for purebred Merino, Border Leicester, Poll Dorset and White Suffolk sire breeds according to the Pearson correlation coefficient between genomic estimated breeding values and breeding values estimated based on a progeny test in a separate dataset.ResultsResults showed a small absolute improvement (0.0 to 8.0% and on average 2.2% across all traits) in prediction accuracy of purebred animals from HD genotypes when prediction was based on the whole dataset. Greater improvement in prediction accuracy (1.0 to 12.0% and on average 5.2%) was observed for animals that were genetically lowly related to the reference set while it ranged from 0.0 to 5.0% for across-breed prediction. On average, no significant advantage was observed with BayesR compared to GBLUP

    Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep

    Get PDF
    International audienceAbstractBackgroundThis study aimed at (1) comparing the accuracies of genomic prediction for parasite resistance in sheep based on whole-genome sequence (WGS) data to those based on 50k and high-density (HD) single nucleotide polymorphism (SNP) panels; (2) investigating whether the use of variants within quantitative trait loci (QTL) regions that were selected from regional heritability mapping (RHM) in an independent dataset improved the accuracy more than variants selected from genome-wide association studies (GWAS); and (3) comparing the prediction accuracies between variants selected from WGS data to variants selected from the HD SNP panel.ResultsThe accuracy of genomic prediction improved marginally from 0.16 ± 0.02 and 0.18 ± 0.01 when using all the variants from 50k and HD genotypes, respectively, to 0.19 ± 0.01 when using all the variants from WGS data. Fitting a GRM from the selected variants alongside a GRM from the 50k SNP genotypes improved the prediction accuracy substantially compared to fitting the 50k SNP genotypes alone. The gain in prediction accuracy was slightly more pronounced when variants were selected from WGS data compared to when variants were selected from the HD panel. When sequence variants that passed the GWAS -log10(pvalue)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}−log10(p value)- log_{10} (p\,value)\end{document} threshold of 3 across the entire genome were selected, the prediction accuracy improved by 5% (up to 0.21 ± 0.01), whereas when selection was limited to sequence variants that passed the same GWAS -log10(pvalue)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}−log10(p value)- log_{10} (p\,value)\end{document} threshold of 3 in regions identified by RHM, the accuracy improved by 9% (up to 0.25 ± 0.01).ConclusionsOur results show that through careful selection of sequence variants from the QTL regions, the accuracy of genomic prediction for parasite resistance in sheep can be improved. These findings have important implications for genomic prediction in sheep

    Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep

    Get PDF
    Background: This study aimed at (1) comparing the accuracies of genomic prediction for parasite resistance in sheep based on whole-genome sequence (WGS) data to those based on 50k and high-density (HD) single nucleotide polymorphism (SNP) panels; (2) investigating whether the use of variants within quantitative trait loci (QTL) regions that were selected from regional heritability mapping (RHM) in an independent dataset improved the accuracy more than variants selected from genome-wide association studies (GWAS); and (3) comparing the prediction accuracies between variants selected from WGS data to variants selected from the HD SNP panel. Results: The accuracy of genomic prediction improved marginally from 0.16 ± 0.02 and 0.18 ± 0.01 when using all the variants from 50k and HD genotypes, respectively, to 0.19 ± 0.01 when using all the variants from WGS data. Fitting a GRM from the selected variants alongside a GRM from the 50k SNP genotypes improved the prediction accuracy substantially compared to fitting the 50k SNP genotypes alone. The gain in prediction accuracy was slightly more pronounced when variants were selected from WGS data compared to when variants were selected from the HD panel. When sequence variants that passed the GWAS -log10(p value) threshold of 3 across the entire genome were selected, the prediction accuracy improved by 5% (up to 0.21 ± 0.01), whereas when selection was limited to sequence variants that passed the same GWAS −log10(p value) threshold of 3 in regions identified by RHM, the accuracy improved by 9% (up to 0.25 ± 0.01). Conclusions: Our results show that through careful selection of sequence variants from the QTL regions, the accuracy of genomic prediction for parasite resistance in sheep can be improved. These findings have important implications for genomic prediction in sheep

    Effect of Accuracy of QTL Parameters Estimation on Genetic Response to Genotype Assisted Selection in Farm Animals

    Full text link
    Selection on estimated QTL effects could be detrimental if the estimated effect is inaccurate. In this study, effect of inaccurate estimation of QTL effect on Genotype Assisted selection (GAS) was investigated. We assumed various estimated QTL effects and various associated standard errors, and further, varied heritability and initial QTL allele frequency. True QTL effects were sampled from the posterior of the likelihood of QTL-hat and a prior gamma distribution of QTL effects. The ratio of GAS response and non-GAS (mass selection) response over repeated samples for a true QTL effect were averaged. The results showed that the GAS/non-GAS ratios was >1.267 for QTL effects of 0.5 of one phenotypic standard deviation (σp) when the SE was 1.267 for QTL effects of 0.5 of one phenotypic standard deviation (σp) when the SE wa

    Effect of the Accuracy of an Estimated QTL Effect on Response to Marker-Assisted Selection

    Full text link
    The effect of the accuracy of estimated QTL effects on relative efficiency of marker-assisted selection (MAS) to non-MAS was investigated in a simulation study in a single trait selection scheme under variable heritability, different QTL effect and different initial QTL allele frequencies. The results showed that the probability of realized MAS response being less than expected response increased with higher standard error associated with an estimated QTL effect. This probability was significantly higher when a high standard error was associated with large QTL effects in lower QTL allele frequencies and/or lower heritability. The MAS responses could be equal or even less than non-MAS when the QTL variance from an inaccurate QTL effect constitutes a considerable proportion of overall genetic variance. This study showed that incorporating prior information about the QTL in a Bayesian approach can effectively remedy the problem of over prediction of MAS response

    Genomic estimation of additive and dominance effects and impact of accounting for dominance on accuracy of genomic evaluation in sheep populations

    Full text link
    The objectives of this study were to estimate the additive and dominance variance component of several weight and ultrasound scanned body composition traits in purebred and combined cross-bred sheep populations based on single nucleotide polymorphism (SNP) marker genotypes and then to investigate the effect of fitting additive and dominance effects on accuracy of genomic evaluation. Additive and dominance variance components were estimated in a mixed model equation based on "average information restricted maximum likelihood" using additive and dominance (co)variances between animals calculated from 48,599 SNP marker genotypes. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of prediction was assessed based on a random 10-fold cross-validation. Across different weight and scanned body composition traits, dominance variance ranged from 0.0% to 7.3% of the phenotypic variance in the purebred population and from 7.1% to 19.2% in the combined cross-bred population. In the combined cross-bred population, the range of dominance variance decreased to 3.1% and 9.9% after accounting for heterosis effects. Accounting for dominance effects significantly improved the likelihood of the fitting model in the combined cross-bred population. This study showed a substantial dominance genetic variance for weight and ultrasound scanned body composition traits particularly in cross-bred population; however, improvement in the accuracy of genomic breeding values was small and statistically not significant. Dominance variance estimates in combined cross-bred population could be overestimated if heterosis is not fitted in the model

    Genomic prediction of weight and wool traits in a multi-breed sheep population

    Full text link
    The objective of this study was to predict the accuracy of genomic prediction for 26 traits, including weight, muscle, fat, and wool quantity and quality traits, in Australian sheep based on a large, multi-breed reference population. The reference population consisted of two research flocks, with the main breeds being Merino, Border Leicester (BL), Poll Dorset (PD), and White Suffolk (WS). The genomic estimated breeding value (GEBV) was based on GBLUP (genomic best linear unbiased prediction), applying a genomic relationship matrix calculated from the 50K Ovine SNP chip marker genotypes. The accuracy of GEBV was evaluated as the Pearson correlation coefficient between GEBV and accurate estimated breeding value based on progeny records in a set of genotyped industry animals. The accuracies of weight traits were relatively low to moderate in PD and WS breeds (0.11-0.27) and moderate to relatively high in BL and Merino (0.25-0.63). The accuracy of muscle and fat traits was moderate to relatively high across all breeds (between 0.21 and 0.55). The accuracy of GEBV of yearling and adult wool traits in Merino was, on average, high (0.33-0.75). The results showed the accuracy of genomic prediction depends on trait heritability and the effective size of the reference population, whereas the observed GEBV accuracies were more related to the breed proportions in the multi-breed reference population. No extra gain in within-breed GEBV accuracy was observed based on across breed information. More investigations are required to determine the precise effect of across-breed information on within-breed genomic prediction

    Genomic prediction from observed and imputed high-density ovine genotypes

    Full text link
    Background: Genomic prediction using high-density (HD) marker genotypes is expected to lead to higher prediction accuracy, particularly for more heterogeneous multi-breed and crossbred populations such as those in sheep and beef cattle, due to providing stronger linkage disequilibrium between single nucleotide polymorphisms and quantitative trait loci controlling a trait. The objective of this study was to evaluate a possible improvement in genomic prediction accuracy of production traits in Australian sheep breeds based on HD genotypes (600k, both observed and imputed) compared to prediction based on 50k marker genotypes. In particular, we compared improvement in prediction accuracy of animals that are more distantly related to the reference population and across sheep breeds. Methods: Genomic best linear unbiased prediction (GBLUP) and a Bayesian approach (BayesR) were used as prediction methods using whole or subsets of a large multi-breed/crossbred sheep reference set. Empirical prediction accuracy was evaluated for purebred Merino, Border Leicester, Poll Dorset and White Suffolk sire breeds according to the Pearson correlation coefficient between genomic estimated breeding values and breeding values estimated based on a progeny test in a separate dataset. Results: Results showed a small absolute improvement (0.0 to 8.0% and on average 2.2% across all traits) in prediction accuracy of purebred animals from HD genotypes when prediction was based on the whole dataset. Greater improvement in prediction accuracy (1.0 to 12.0% and on average 5.2%) was observed for animals that were genetically lowly related to the reference set while it ranged from 0.0 to 5.0% for across-breed prediction. On average, no significant advantage was observed with BayesR compared to GBLUP
    corecore