19 research outputs found

    Petrologic and minerochemical trends of acapulcoites, winonaites and lodranites: New evidence from image analysis and EMPA investigations

    Get PDF
    A comprehensive classification of primitive achondrites is difficult due to the high compositional and textural variability and the low number of samples available. Besides oxygen isotopic analysis, other minerochemical and textural parameters may provide a useful tool to solve taxonomic and genetic problems related to these achondrites. The results of a detailed modal, textural and minerochemical analysis of a set of primitive achondrites are presented and compared with literature data. All the samples show an extremely variable modal composition among both silicate and opaque phases. A general trend of troilite depletion vs. silicate fraction enrichment has been observed, with differences among coarse-grained and fine-grained meteorites. In regard to the mineral chemistry, olivine shows marked differences between the acapulcoite-lodranite and winonaite groups, while a compositional equilibrium between matrix and chondrules for both groups, probably due to the scarce influence of metamorphic grade on this phase, was observed. The analysis of Cr and Mn in clinopyroxene revealed two separate clusters for the acapulcoite/lodranite and winonaite groups, while the analysis of the reduction state highlighted three separate clusters. An estimate of equilibrium temperatures for the acapulcoite-lodranite and winonaite groups is provided. Finally, proposals regarding the genetic processes of these groups are discussed

    Northwest Africa 6232: Visible-near infrared reflectance spectra variability of an olivine diogenite

    Get PDF
    Visible and near-infrared (VNIR) reflectance is an important spectroscopic technique to identify minerals, and their associations, on planetary body surfaces. Howardites, eucrites, and diogenites (HED) are a class of igneous-like meteorites whose genetic connection with asteroid 4 Vesta has since long been inferred and recently confirmed by Dawn mission results. Pyroxene and olivine are the two major mafic minerals present in HED which can be identified with VNIR reflectance measurements. Thus, studying the compositional variability of those phases and their mixtures by means of laboratory spectroscopic measurements on different diogenitic or eucritic samples is one of the prime methods to better understand the evolution of 4 Vesta's crust. Here, we report the VNIR reflectance spectral analysis of a harzburgitic olivine diogenite, Northwest Africa 6232 (probably paired with Northwest Africa 5480), containing variable amounts of olivine as small grains or aggregates. We found that the olivine diogenite spectral parameters (e.g., band position) of powdered samples and polished slabs are in agreement. Moreover, the olivine diogenite band position shifts from synthetic orthopyroxene in accordance with the presence of olivine and chromite. In particular, the presence of a large olivine clast permits us to determine a linear variation of the band position from synthetic orthopyroxene and olivine, but underestimates the presence of olivine in the olivine diogenite spot

    Green and scalable synthesis of nanocrystalline kuramite

    Get PDF
    The new generation of solar cells aims to overcome many of the issues created by silicon-based devices (e.g., decommissioning, flexibility and high-energy production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu-Sn-S (CTS) materials fulfils all of these requirements. The material constraints must be considered, not only for the final product, but for the whole production process. Most works reporting the successful synthesis of CTS have employed surfactants, high pressure or noxious solvents. In this paper, we demonstrate the synthesis of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic microprobe analysis (EMPA) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population

    Calcopirite: caratterizzazione minerochimica e paragenetica tramite tecniche microanalitiche convenzionali e non

    No full text
    Dottorato di ricerca in mineralogia e petrologia. 11. ciclo.Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Two exceptional historic specimens of the Florence University Museum, recently restored

    Get PDF
    corecore