33 research outputs found
Increased Incidence of Vestibular Disorders in Patients With SARS-CoV-2
OBJECTIVE: Determine the incidence of vestibular disorders in patients with SARS-CoV-2 compared to the control population.
STUDY DESIGN: Retrospective.
SETTING: Clinical data in the National COVID Cohort Collaborative database (N3C).
METHODS: Deidentified patient data from the National COVID Cohort Collaborative database (N3C) were queried based on variant peak prevalence (untyped, alpha, delta, omicron 21K, and omicron 23A) from covariants.org to retrospectively analyze the incidence of vestibular disorders in patients with SARS-CoV-2 compared to control population, consisting of patients without documented evidence of COVID infection during the same period.
RESULTS: Patients testing positive for COVID-19 were significantly more likely to have a vestibular disorder compared to the control population. Compared to control patients, the odds ratio of vestibular disorders was significantly elevated in patients with untyped (odds ratio [OR], 2.39; confidence intervals [CI], 2.29-2.50;
CONCLUSIONS: The incidence of vestibular disorders differed between COVID-19 variants and was significantly elevated in COVID-19-positive patients compared to the control population. These findings have implications for patient counseling and further research is needed to discern the long-term effects of these findings
Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.
To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC
Stimulation of splenocytes from immune mice with purified recombinant proteins.
<p>Mice (n = 7–10) were intranasally immunized with WCC and cholera toxin as described. Splenocytes from immunized mice were stimulated with 10 μg/ml of the indicated recombinant protein for 3 days, after which supernatants were harvested and assayed for IL-17A concentration. Values are normalized to the DMEM stimulated response for each animal. Bars represent medians with interquartile ranges.</p
T<sub>H</sub>17 cell antigens isolated from immunogenic fractions of soluble portion of RM200, predicted function, and primers used for expression in <i>E. coli.</i>
<p>T<sub>H</sub>17 cell antigens isolated from immunogenic fractions of soluble portion of RM200, predicted function, and primers used for expression in <i>E. coli.</i></p
Size separation of fractions and stimulation of splenocytes.
<p>A. SDS-PAGE of fractions was performed and gel was silver-stained; shown here are the electrophoretic patterns of three fractions eluted into the same chamber during different transverse elutions. B. Results from stimulation of splenocytes from WCC immunized mice (n = 6) with equal concentrations of each fraction. Supernatants were collected after 3 days of incubation and IL-17A concentration in the supernatant was measured by ELISA. IL-17A values are shown here, normalized to the DMEM-stimulated response of each animal. Bars represent medians with interquartile range. WCC: chloroform-inactivated pneumococcal whole cell antigen, 10 µg protein/ml; WCCsup: soluble fraction of WCC, 7 µg protein/ml.</p
Immunization with individual proteins confers protection against nasopharyngeal carriage.
<p>Mice were intranasally immunized twice with 1 µg of cholera toxin alone (CT) or CT combined with the proteins as indicated. Four weeks after the second immunization, mice were intranasally challenged with strain 0603; density of colonization was determined one week later. Bars indicate median values and nasal colonization density was compared by the Mann-Whitney <i>U</i> test.</p