321 research outputs found

    Heat transfer with very high free stream turbulence

    Get PDF
    Stanton numbers as much as 350 percent above the accepted correlations for flat plate turbulent boundary layer heat transfer have been found in experiments on a low velocity air flow with very high turbulence (up to 50 percent). These effects are far larger that have been previously reported and the data do not correlate as well in boundary layer coordinates (Stanton number and Reynolds number) as they do in simpler coordinates: h vs. X. The very high relative turbulence levels were achieved by placing the test plate in different positions in the margin of a large diameter free jet. The large increases may be due to organized structures of large scale which are present in the marginal flowfield around a free jet

    Heat transfer with very high free-stream turbulence and streamwise vortices

    Get PDF
    Results are presented for two experimental programs related to augmentation of heat transfer by complex flow characteristics. In one program, high free stream turbulence (up to 63 percent) was shown to increase the Stanton number by more than a factor of 5, compared with the normally expected value based on x-Reynolds number. These experiments are being conducted in a free-jet facility, near the margins of the jet. To a limited extent, the mean velocity, turbulence intensity, and integral length scale can be separately varied. The results show that scale is a very important factor in determining the augmentation. Detailed studies of the turbulence structure are being carried out using an orthogonal triple hot-wire anemometer equipped with a fourth wire for measuring temperature. The v' component of turbulence appears to be distributed differently from u' or w'. In the second program, the velocity distributions and boundary layer thicknesses associated with a pair of counter-rotating, streamwise vortices were measured. There is a region of considerably thinned boundary layer between the two vortices when they are of approximately the same strength. If one vortex is much stronger than the other, the weaker vortex may be lifted off the surface and absorbed into the stronger

    A 10-hour period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123

    Full text link
    Aims. What is the origin of the large-amplitude variability in Wolf-Rayet WN8 stars in general and WR123 in particular? A dedicated spectroscopic campaign targets the ten-hour period previously found in the high-precision photometric data obtained by the MOST satellite. Methods. In June-August 2003 we obtained a series of high signal-to-noise, mid-resolution spectra from several sites in the {\lambda}{\lambda} 4000 - 6940 A^{\circ} domain. We also followed the star with occasional broadband (Johnson V) photometry. The acquired spectroscopy allowed a detailed study of spectral variability on timescales from \sim 5 minutes to months. Results. We find that all observed spectral lines of a given chemical element tend to show similar variations and that there is a good correlation between the lines of different elements, without any significant time delays, save the strong absorption components of the Hei lines, which tend to vary differently from the emission parts. We find a single sustained periodicity, P \sim 9.8 h, which is likely related to the relatively stable pulsations found in MOST photometry obtained one year later. In addition, seemingly stochastic, large-amplitude variations are also seen in all spectral lines on timescales of several hours to several days.Comment: 6 pages, 4 figures, 2 tables, data available on-line, accepted in A&A Research Note

    Расчет параметров эффективного дипольного момента молекул типа XY[2] на основе теории изотопозамещения

    Get PDF
    На основе теории изотопозамещения были получены соотношения, позволяющие рассчитать параметры эффективного дипольного момента изотопологов молекул типа XY[2] при симметричном замещении атомов. Исходной информацией, необходимой для осуществления подобных расчетов, является информация о структурных параметрах и параметрах эффективного дипольного момента “материнской” молекулы. Полученные результаты справедливы для комбинационных полос и обертонов. Полученные соотношения значительно упрощают, а в некоторых случаях, делают возможным процесс определения абсолютных интенсивностей линий поглощения изотопологов типа XY[2]

    Seasonal variations of gravity wave activity in the lower stratosphere over an Antarctic Peninsula station

    Get PDF
    An 8 year series of 965 high-resolution radiosonde soundings over Rothera (67 degrees S, 68 degrees W) on the Antarctic Peninsula are used to study gravity wave characteristics in the lower stratosphere. The gravity wave energy is shown to have a seasonal variation with peaks at the equinoxes; the largest peak is around the spring equinox. During the winter months and extending into the spring, there is both an enhancement in the downward propagating wave activity and a reduction in the amount of critical-level filtering of upward propagating mountain waves. The horizontal propagation directions of the gravity waves were determined using hodographs. It was found that there is a predisposition toward northward and westward propagating waves above Rothera. This is in agreement with previous observations of gravity wave momentum flux in the wintertime mesosphere over Rothera. These results are consistent with a scenario whereby the stratospheric gravity wavefield above Rothera is determined by a combination of wind flow over topography-generating waves from below, and sources such as the edge of the polar stratospheric vortex-generating waves from above, especially during winter and spring

    Slow expansion of the shell of the recurrent nova T Pyxidis and detection of a faint extended envelope

    Get PDF
    Deep CCD images of the recurrent nova T Pyx have revealed a faint, extended Hα + [N ii] halo twice as large as the previously detected shell. An [O iii] image of T Pyx shows a smooth, small shell. Comparison of 1980 and 1985 images of the Hα + [N ii] shell show an expansion of less than 10%. If the bright, inner shell is due to the 1966 eruption, it should have expanded ~36% from 1980 to 1985 (assuming uniform shell expansion). We rule out the possibility of the T Pyx shell being associated with a planetary nebula-type ejection for two reasons: the shell mass is less than 10^(-4) M_⊙, and the shell expansion velocity is ~350 km s^(-1). This expansion velocity is much slower than the 850 km s^(-1) and 2000 km s^(-1) velocities reported by Catchpole (1969) during the 1966 outburst. If the 10" diameter shell is from the 1966 outburst, then the ejecta have given up most of their bulk kinetic energy by interaction with circumstellar matter or significant amounts of (now visible) low-velocity material were ejected during the last outburst, or both. The lack of strong [O i] λ6300 and [S ii] λλ6717,34 emission lines argues against much shock interaction at the present era, and, indirectly, for the 1944 identification of the 10" shell, while thermonuclear runaway nova models support the multiple-velocity idea. A point-spread function subtracted from an Hα + [N ii] image of T Pyx has revealed a 2" radius ring around the central star. This may be the ejecta from the 1966 eruption. The photoionized shell gas implies that the central star should be UV-bright. High resolution Hubble Space Telescope imaging observations of the next T Pyx eruption might yield early detection of light echoes

    Structure and surface properties of eddies in the southeast Pacific Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 2295–2309, doi:10.1002/jgrc.20175.A number of studies have posited that coastally generated eddies could cool the southeast Pacific Ocean (SEP) by advecting cool, upwelled waters offshore. We examine this mechanism by characterizing the upper-ocean properties of mesoscale eddies in the SEP with a variety of observations and by estimating the surface-layer eddy heat flux divergence with satellite data. Cyclonic and anticyclonic eddies observed during two cruises featured deep positive salinity anomalies along the 26.5 kg m−3isopycnal, indicating that the eddies had likely trapped and transported coastal waters offshore. The cyclonic eddies observed during the cruises were characterized by shoaling isopycnals in the upper 200 m and cool near-surface temperature anomalies, whereas the upper-ocean structure of anticyclonic eddies was more variable. Using a variety of large-scale observations, including Argo float profiles, drifter records, and satellite sea surface temperature fields, we show that, relative to mean conditions, cyclonic eddies are associated with cooler surface temperatures and that anticyclonic eddies are associated with warmer surface temperatures. Within each data set, the mean eddy surface temperature anomalies are small and of approximately equal magnitude but opposite sign. Eddy statistics drawn from satellite altimetry data reveal that cyclonic and anticyclonic eddies occur with similar frequency and have similar average radii in the SEP. A satellite-based estimate of the surface-layer eddy heat flux divergence, while large in coastal regions, is small when averaged over the SEP, suggesting that eddies do not substantially contribute to cooling the surface layer of the SEP.This work was supported by NOAA’s Climate Program Office and by NSF Grant OCE-0745508. Microwave OI SST data are produced by Remote Sensing Systems and sponsored by National Oceanographic Partnership Program (NOPP), the NASA Earth Science Physical Oceanography Program, and the NASA MEaSUREs DISCOVER Project

    Southern Ocean GLOBEC moored array and automated weather station data report

    Get PDF
    Southern Ocean GLOBal ocean ECosystemsAs part of the U.S. Southern Ocean GLOBEC program, moored time series measurements of temperature, conductivity (salinity), pressure, velocity, and acoustic backscatter were made from March 2001 to March 2003 in and near Marguerite Bay, located on the Antarctic Peninsula western shelf. To monitor surface forcing during the moored array observations, two automatic weather stations (AWSs) were deployed on islands in Marguerite Bay and time series of wind, air temperature, pressure, and relative humidity were collected from May 2001 through March 2003. This report describes the individual moorings, their locations and local bathymetry, the instrumentation used and measurement depths, calibration and data processing steps taken to produce final time series, and basic plots of the final time series. The AWS data acquisition and processing are also described and basic plots of the final meteorological time series presented. Directions are given about how to access the raw and processed moored and AWS data via the SO GLOBEC website (http://globec.whoi.edu/jg/dir/globec/soglobec/).Funding was provided by the National Science Foundation under contract number OPP-99-10092

    Blobs in Wolf-Rayet Winds: Random Photometric and Polarimetric Variability

    Full text link
    Some isolated Wolf-Rayet stars present random variability in their optical flux and polarization. We make the assumption that such variability is caused by the presence of regions of enhanced density, i.e. blobs, in their envelopes. In order to find the physical characteristics of such regions we have modeled the stellar emission using a Monte Carlo code to treat the radiative transfer in an inhomogeneous electron scattering envelope. We are able to treat multiple scattering in the regions of enhanced density as well as in the envelope itself. The finite sizes of the source and structures in the wind are also taken into account. Most of the results presented here are based on a parameter study of models with a single blob. The effects due to multiple blobs in the envelope are considered to a more limited extent. Our simulations indicate that the density enhancements must have a large geometric cross section in order to produce the observed photopolarimetric variability. The sizes must be of the order of one stellar radius and the blobs must be located near the base of the envelope. These sizes are the same inferred from the widths of the sub-peaks in optical emission lines of Wolf-Rayet stars. Other early-type stars show random polarimetric fluctuations with characteristics similar to those observed in Wolf-Rayet stars, which may also be interpreted in terms of a clumpy wind. Although the origin of such structures is still unclear, the same mechanism may be working in different types of hot stars envelopes to produce such inhomogeneities.Comment: Accepted to ApJ. 17 pages + 6 figure

    The Possibility of Thermal Instability in Early-Type Stars Due to Alfven Waves

    Full text link
    It was shown by dos Santos et al. the importance of Alfv\'en waves to explain the winds of Wolf-Rayet stars. We investigate here the possible importance of Alfv\'en waves in the creation of inhomogeneities in the winds of early-type stars. The observed infrared emission (at the base of the wind) of early-type stars is often larger than expected. The clumping explains this characteristic in the wind, increasing the mean density and hence the emission measure, making possible to understand the observed infrared, as well as the observed enhancement in the blue wing of the HαH_\alpha line. In this study, we investigate the formation of these clumps a via thermal instability. The heat-loss function used, H(T,n)H(T,n), includes physical processes such as: emission of (continuous and line) recombination radiation; resonance line emission excited by electron collisions; thermal bremsstrahlung; Compton heating and cooling; and damping of Alfv\'en waves. As a result of this heat-loss function we show the existence of two stable equilibrium regions. The stable equilibrium region at high temperature is the diffuse medium and at low temperature the clumps. Using this reasonable heat-loss function, we show that the two stable equilibrium regions can coexist over a narrow range of pressures describing the diffuse medium and the clumps.Comment: 21 pages (psfig.sty), 5 figures (included), ApJ accepted. Also available at http://www.iagusp.usp.br/preprints/preprint.htm
    corecore