26 research outputs found

    Defining the industrial and engineering management professional profile: a longitudinal study based on job advertisements

    Get PDF
    The engineering professional profiles have been discussed by several branches of the engineering field. On the one hand, this discussion helps to understand the professional practice and contributes to the specification of the competences that are suitable for each function and company culture. On the other hand, it is an essential starting point for the definition of curricula in engineering schools. Thus, this study aims to characterize, in an innovative way based on job advertisements, the demand for competences and areas of practice for Industrial Engineering and Management contributing for the definition of a professional profile. This characterization is based on the analysis of 1391 job advertisements, collected during seven years from a Portuguese newspaper. The data analysis takes into account the job description in which two categories were considered: areas of professional practice (e.g. project management) and transversal competences (e.g. teamwork). Considering the total number of job advertisements, it was possible to identify 1,962 cumulative references for 11 professional practice areas and 5,261 cumulative references for transversal competences. The contribution of this study lies on the identification of the main areas of practice and the main transversal competences demanded by employers.This work was partially funded by COMPETE-POCI-01-0145-FEDER-007043 and FCT-UID-CEC-00319-2013

    SPHINGOLIPIDS ACTIVATE MEMBRANE-FUSION OF SEMLIKI-FOREST-VIRUS IN A STEREOSPECIFIC MANNER

    No full text
    The alphavirus Semliki Forest virus (SFV) enters cells through receptor-mediated endocytosis. Subsequently, triggered by the acid pH in endosomes, the viral envelope fuses with the endosomal membrane. Membrane fusion of SFV has been shown previously to be dependent on the presence of cholesterol in the target membrane. Recently, we have demonstrated that fusion of SFV also requires sphingolipids [Nieva, J. L., Bron, R., Corver, J., & Wilschut, J. (1994) EMBO J. 13, 2797-2804]. In the present paper, we show that the activation of low-pH-dependent fusion of SFV by sphingolipids is a stereospecific process. Pyrene-labeled SFV fused rapidly and extensively with liposomes consisting of a mixture of phosphatidylcholine, phosphatidylethanolamine, and cholesterol, supplemented with low concentrations of D-erythro-ceramide, representing the naturally occurring sphingolipid stereoisomer. Fusion was assessed by a decrease in the pyrene excimer fluorescence. L-erythro-, D-threo-, and L-threo-ceramide did not support fusion of the virus. Similar results were obtained with the corresponding sphingomyelin stereoisomers, The stereospecificity of SFV fusion activation was confirmed by using an assay based on degradation of the viral capsid protein by trypsin encapsulated in the target liposomes. Fusion mediated by D-erythro-ceramide was not affected by the additional presence in the target liposomes of ceramide stereoisomers incapable of fusion activation. Binding of the virus to the liposomes, as assessed by flotation on sucrose density gradients, was not dependent on the presence of fusion-competent or fusion-incompetent sphingolipids in the liposomes, The results of this study support the notion that a stereospecific interaction of the viral fusion protein with D-erythro sphingolipids in the target membrane represents an essential step in the activation of the fusion capacity of SFV

    Sphingolipid-dependent fusion of Semliki Forest virus with cholesterol-containing liposomes requires both the 3-hydroxyl group and the double bond of the sphingolipid backbone.

    No full text
    Low-pH-induced membrane fusion of Semliki Forest virus (SFV) in a model system is mediated by sphingolipids in the target membrane; ceramide is the sphingolipid minimally required (J. L. Nieva, R. Bron, J. Corver, and J. Wilschut, EMBO J. 13:2797-2804, 1994). Here, using various ceramide analogs, we demonstrate that sphingolipid-dependent fusion of SFV with cholesterol-containing liposomes exhibits remarkable molecular specificity, the 3-hydroxyl group and the 4,5-trans carbon-carbon double bond of the sphingosine backbone being critical for the sphingolipid to mediate the process. This observation supports the notion that sphingolipids act as a cofactor in SFV fusion, interacting directly with the viral fusion protein to induce its ultimate fusion-active conformation
    corecore