6,826 research outputs found

    Developmental programming: rescuing disruptions in preovulatory follicle growth and steroidogenesis from prenatal testosterone disruption

    Get PDF
    Abstract Background Prenatal testosterone (T) excess from days 30-90 of gestation disrupts gonadotropin surge and ovarian follicular dynamics and induces insulin resistance and functional hyperandrogenism in sheep. T treatment from days 60-90 of gestation produces a milder phenotype, albeit with reduced fecundity. Using this milder phenotype, the aim of this study was to understand the relative postnatal contributions of androgen and insulin in mediating the prenatal T induced disruptions in ovarian follicular dynamics. Methods Four experimental groups were generated: 1) control (vehicle treatment), 2) prenatal T-treated (100 mg i.m. administration of T propionate twice weekly from days 60-90 of gestation), 3) prenatal T plus postnatal anti-androgen treated (daily oral dose of 15 mg/kg/day of flutamide beginning at 8 weeks of age) and 4) prenatal T and postnatal insulin sensitizer-treated (daily oral dose of 8 mg/day rosiglitazone beginning at 8 weeks of age). Follicular response to a controlled ovarian stimulation protocol was tested during their third breeding season. Main outcome measures included the determination of number and size of ovarian follicles and intrafollicular concentrations of steroids. Results At the end of the controlled ovarian stimulation, the number of follicles approaching ovulatory size (≥6 mm) were ~35 % lower in prenatal T-treated (6.5 ± 1.8) compared to controls (9.8 ± 2.0). Postnatal anti-androgen (10.3 ± 1.9), but not insulin sensitizer (5.0 ± 0.9), treatment prevented this decrease. Preovulatory sized follicles in the T group had lower intrafollicular T, androstenedione, and progesterone compared to that of the control group. Intrafollicular steroid disruption was partially reversed solely by postnatal insulin sensitizer treatment. Conclusions These results demonstrate that the final preovulatory follicular growth and intrafollicular steroid milieu is impaired in prenatal T-treated females. The findings are consistent with the lower fertility rate reported earlier in these females. The finding that final follicle growth was fully rescued by postnatal anti-androgen treatment and intrafollicular steroid milieu partially by insulin sensitizer treatment suggest that both androgenic and insulin pathway disruptions contribute to the compromised follicular phenotype of prenatal T-treated females.http://deepblue.lib.umich.edu/bitstream/2027.42/134597/1/13048_2016_Article_250.pd

    Tachyon cosmology with non-vanishing minimum potential: a unified model

    Full text link
    We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behaves quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.Comment: 18 p

    The Schrodinger Wave Functional and Closed String Rolling Tachyon

    Full text link
    In this short note we apply Schrodinger picture description of the minisuperspace approach to the closed string tachyon condensation. We will calculate the rate of produced closed string and we will show that the density of high massive closed string modes reaches the string density in time of order one in string units.Comment: 12 page

    Zeta Nonlocal Scalar Fields

    Full text link
    We consider some nonlocal and nonpolynomial scalar field models originated from p-adic string theory. Infinite number of spacetime derivatives is determined by the operator valued Riemann zeta function through d'Alembertian \Box in its argument. Construction of the corresponding Lagrangians L starts with the exact Lagrangian Lp\mathcal{L}_p for effective field of p-adic tachyon string, which is generalized replacing p by arbitrary natural number n and then taken a sum of Ln\mathcal{L}_n over all n. The corresponding new objects we call zeta scalar strings. Some basic classical field properties of these fields are obtained and presented in this paper. In particular, some solutions of the equations of motion and their tachyon spectra are studied. Field theory with Riemann zeta function dynamics is interesting in its own right as well.Comment: 13 pages, submitted to Theoretical and Mathematical Physic

    Deep Depth From Focus

    Full text link
    Depth from focus (DFF) is one of the classical ill-posed inverse problems in computer vision. Most approaches recover the depth at each pixel based on the focal setting which exhibits maximal sharpness. Yet, it is not obvious how to reliably estimate the sharpness level, particularly in low-textured areas. In this paper, we propose `Deep Depth From Focus (DDFF)' as the first end-to-end learning approach to this problem. One of the main challenges we face is the hunger for data of deep neural networks. In order to obtain a significant amount of focal stacks with corresponding groundtruth depth, we propose to leverage a light-field camera with a co-calibrated RGB-D sensor. This allows us to digitally create focal stacks of varying sizes. Compared to existing benchmarks our dataset is 25 times larger, enabling the use of machine learning for this inverse problem. We compare our results with state-of-the-art DFF methods and we also analyze the effect of several key deep architectural components. These experiments show that our proposed method `DDFFNet' achieves state-of-the-art performance in all scenes, reducing depth error by more than 75% compared to the classical DFF methods.Comment: accepted to Asian Conference on Computer Vision (ACCV) 201

    Cosmology in Nonlinear Born-Infeld Scalar Field Theory With Negative Potentials

    Full text link
    The cosmological evolution in Nonlinear Born-Infeld(hereafter NLBI) scalar field theory with negative potentials was investigated. The cosmological solutions in some important evolutive epoches were obtained. The different evolutional behaviors between NLBI and linear(canonical) scalar field theory have been presented. A notable characteristic is that NLBI scalar field behaves as ordinary matter nearly the singularity while the linear scalar field behaves as "stiff" matter. We find that in order to accommodate current observational accelerating expanding universe the value of potential parameters m|m| and V0|V_0| must have an {\it upper bound}. We compare different cosmological evolutions for different potential parameters m,V0m, V_0.Comment: 18 pages, 18 figures, some references added, revised version for Int.J.Mod.Phys.A, appeared in Int.J.Mod.Phys.

    Fluctuation-driven insulator-to-metal transition in an external magnetic field

    Full text link
    We consider a model for a metal-insulator transition of correlated electrons in an external magnetic field. We find a broad region in interaction and magnetic field where metallic and insulating (fully magnetized) solutions coexist and the system undergoes a first-order metal-insulator transition. A global instability of the magnetically saturated solution precedes the local ones and is caused by collective fluctuations due to poles in electron-hole vertex functions.Comment: REVTeX 4 pages, 3 PS figure

    The RKKY interactions and the Mott Transition

    Full text link
    A two-site cluster generalization of the Hubbard model in large dimensions is examined in order to study the role of short-range spin correlations near the metal-insulator transition (MIT). The model is mapped to a two-impurity Kondo-Anderson model in a self-consistently determined bath, making it possible to directly address the competition between the Kondo effect and RKKY interactions in a lattice context. Our results indicate that the RKKY interactions lead to qualitative modifications of the MIT scenario even in the absence of long range antiferromagnetic ordering.Comment: 10 pages, 10 figures; to appear in Phys. Rev. B (1999

    Fundamental Strings in Open String Theory at the Tachyonic Vacuum

    Get PDF
    We show that the world-volume theory on a D-p-brane at the tachyonic vacuum has solitonic string solutions whose dynamics is governed by the Nambu-Goto action of a string moving in (25+1) dimensional space-time. This provides strong evidence for the conjecture that at this vacuum the full (25+1) dimensional Poincare invariance is restored. We also use this result to argue that the open string field theory at the tachyonic vacuum must contain closed string excitations.Comment: LaTeX file, 16 pages, references and clarification adde
    corecore