6 research outputs found

    Saari's homographic conjecture for planar equal-mass three-body problem under a strong force potential

    Full text link
    Donald Saari conjectured that the NN-body motion with constant configurational measure is a motion with fixed shape. Here, the configurational measure μ\mu is a scale invariant product of the moment of inertia I=∑kmk∣qk∣2I=\sum_k m_k |q_k|^2 and the potential function U=∑i<jmimj/∣qi−qj∣αU=\sum_{i<j} m_i m_j/|q_i-q_j|^\alpha, α>0\alpha >0. Namely, μ=Iα/2U\mu = I^{\alpha/2}U. We will show that this conjecture is true for planar equal-mass three-body problem under the strong force potential ∑i<j1/∣qi−qj∣2\sum_{i<j} 1/|q_i-q_j|^2

    Saari's homographic conjecture for planar equal-mass three-body problem in Newton gravity

    Full text link
    Saari's homographic conjecture in N-body problem under the Newton gravity is the following; configurational measure \mu=\sqrt{I}U, which is the product of square root of the moment of inertia I=(\sum m_k)^{-1}\sum m_i m_j r_{ij}^2 and the potential function U=\sum m_i m_j/r_{ij}, is constant if and only if the motion is homographic. Where m_k represents mass of body k and r_{ij} represents distance between bodies i and j. We prove this conjecture for planar equal-mass three-body problem. In this work, we use three sets of shape variables. In the first step, we use \zeta=3q_3/(2(q_2-q_1)) where q_k \in \mathbb{C} represents position of body k. Using r_1=r_{23}/r_{12} and r_2=r_{31}/r_{12} in intermediate step, we finally use \mu itself and \rho=I^{3/2}/(r_{12}r_{23}r_{31}). The shape variables \mu and \rho make our proof simple

    Action minimizing orbits in the n-body problem with simple choreography constraint

    Full text link
    In 1999 Chenciner and Montgomery found a remarkably simple choreographic motion for the planar 3-body problem (see \cite{CM}). In this solution 3 equal masses travel on a eight shaped planar curve; this orbit is obtained minimizing the action integral on the set of simple planar choreographies with some special symmetry constraints. In this work our aim is to study the problem of nn masses moving in \RR^d under an attractive force generated by a potential of the kind 1/rα1/r^\alpha, α>0\alpha >0, with the only constraint to be a simple choreography: if q1(t),...,qn(t)q_1(t),...,q_n(t) are the nn orbits then we impose the existence of x \in H^1_{2 \pi}(\RR,\RR^d) such that q_i(t)=x(t+(i-1) \tau), i=1,...,n, t \in \RR, where τ=2π/n\tau = 2\pi / n. In this setting, we first prove that for every d,n \in \NN and α>0\alpha>0, the lagrangian action attains its absolute minimum on the planar circle. Next we deal with the problem in a rotating frame and we show a reacher phenomenology: indeed while for some values of the angular velocity minimizers are still circles, for others the minima of the action are not anymore rigid motions.Comment: 24 pages; 4 figures; submitted to Nonlinearit
    corecore