1,090 research outputs found
Silica Vesicle Nanovaccine Formulations Stimulate Long-Term Immune Responses to the Bovine Viral Diarrhoea Virus E2 Protein
Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications
Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis
Peer reviewedPublisher PD
Recommended from our members
Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli
MIBG avidity correlates with clinical features, tumor biology, and outcomes in neuroblastoma: A report from the Children’s Oncology Group
BackgroundPrior studies suggest that neuroblastomas that do not accumulate metaiodobenzylguanidine (MIBG) on diagnostic imaging (MIBG non‐avid) may have more favorable features compared with MIBG avid tumors. We compared clinical features, biologic features, and clinical outcomes between patients with MIBG nonavid and MIBG avid neuroblastoma.ProcedurePatients had metastatic high‐ or intermediate‐risk neuroblastoma and were treated on Children’s Oncology Group protocols A3973 or A3961. Comparisons of clinical and biologic features according to MIBG avidity were made with chi‐squared or Fisher exact tests. Event‐free (EFS) and overall (OS) survival compared using log–rank tests and modeled using Cox models.ResultsThirty of 343 patients (8.7%) had MIBG nonavid disease. Patients with nonavid tumors were less likely to have adrenal primary tumors (34.5 vs. 57.2%; P = 0.019), bone metastases (36.7 vs. 61.7%; P = 0.008), or positive urine catecholamines (66.7 vs. 91.0%; P < 0.001) compared with patients with MIBG avid tumors. Nonavid tumors were more likely to be MYCN amplified (53.8 vs. 32.6%; P = 0.030) and had lower norepinephrine transporter expression. Patients with MIBG nonavid disease had a 5‐year EFS of 50.0% compared with 38.7% for patients with MIBG avid disease (P = 0.028). On multivariate testing in high‐risk patients, MIBG avidity was the sole adverse prognostic factor for EFS identified (hazard ratio 1.77; 95% confidence interval 1.04–2.99; P = 0.034).ConclusionsPatients with MIBG nonavid neuroblastoma have lower rates of adrenal primary tumors, bone metastasis, and catecholamine secretion. Despite being more likely to have MYCN‐amplified tumors, these patients have superior outcomes compared with patients with MIBG avid disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138438/1/pbc26545_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138438/2/pbc26545.pd
Monetary Policy, Bank Bailouts and the Sovereign-Bank Risk Nexus in the Euro Area
The paper analyses the empirical relationship between bank risk and sovereign credit risk in the euro area. Using structural VAR with daily financial markets data for 2003-13, the analysis confirms two-way causality between shocks to sovereign risk and bank risk, with the former being overall more important in explaining bank risk, than vice versa. The paper focuses specifically on the impact of non-standard monetary policy measures by the European Central Bank and on the effects of bank bailout policies by national governments. Testing specific hypotheses formulated in the literature, we find that bank bailout policies have reduced solvency risk in the banking sector mostly at the expense of raising the credit risk of sovereigns. By contrast, monetary policy was in most, but not all cases effective in lowering credit risk among both sovereigns and banks. Finally, we find spillover effects in particular from sovereigns in the euro area periphery to the core countries
Malignant triton tumor in a patient with Li-Fraumeni syndrome and a novel TP53 mutation
We report a 3-year-old boy with a malignant triton tumor (MTT) involving the left masticator space with local invasion and regional lymph node metastasis. Family history and detection of a novel germline TP53 mutation confirmed his diagnosis of Li Fraumeni syndrome (LFS). MTT has not been previously described in association with LFS. This case along with a comprehensive review of the literature, illustrate the importance of both somatic and germline TP53 mutations in the pathogenesis MTT. The tumor could not be resected and he was successfully treated with intensive induction chemotherapy, irradiation, and high-dose chemotherapy with autologous stem cell transplantation. © 2005 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35300/1/20700_fta.pd
Myeloid-cell protein tyrosine phosphatase-1B deficiency in mice protects against high-fat diet and lipopolysaccharide-induced inflammation, hyperinsulinemia, and endotoxemia through an IL-10 STAT3-dependent mechanism.
Protein tyrosine phosphatase-1B (PTP1B) negatively regulates insulin and leptin signaling, rendering it an attractive drug target for treatment of obesity-induced insulin resistance. However, some studies suggest caution when targeting macrophage PTP1B, due to its potential anti-inflammatory role. We assessed the role of macrophage PTP1B in inflammation and whole-body metabolism using myeloid-cell (LysM) PTP1B knockout mice (LysM PTP1B). LysM PTP1B mice were protected against lipopolysaccharide (LPS)-induced endotoxemia and hepatic damage associated with decreased proinflammatory cytokine secretion in vivo. In vitro, LPS-treated LysM PTP1B bone marrow-derived macrophages (BMDMs) displayed increased interleukin (IL)-10 mRNA expression, with a concomitant decrease in TNF-α mRNA levels. These anti-inflammatory effects were associated with increased LPS- and IL-10-induced STAT3 phosphorylation in LysM PTP1B BMDMs. Chronic inflammation induced by high-fat (HF) feeding led to equally beneficial effects of macrophage PTP1B deficiency; LysM PTP1B mice exhibited improved glucose and insulin tolerance, protection against LPS-induced hyperinsulinemia, decreased macrophage infiltration into adipose tissue, and decreased liver damage. HF-fed LysM PTP1B mice had increased basal and LPS-induced IL-10 levels, associated with elevated STAT3 phosphorylation in splenic cells, IL-10 mRNA expression, and expansion of cells expressing myeloid markers. These increased IL-10 levels negatively correlated with circulating insulin and alanine transferase levels. Our studies implicate myeloid PTP1B in negative regulation of STAT3/IL-10-mediated signaling, highlighting its inhibition as a potential anti-inflammatory and antidiabetic target in obesity
- …