145 research outputs found

    Immunohistochemical discrimination of wild-type EGFR from EGFRvIII in fixed tumour specimens using anti-EGFR mAbs ICR9 and ICR10

    Get PDF
    Background:The human epidermal growth factor receptor (EGFR) is an important therapeutic target in oncology, and three different types of EGFR inhibitors have been approved for the treatment of cancer patients. However, there has been no clear association between the expression levels of EGFR protein in the tumours determined by the FDA-approved EGFR PharmDx kit (Dako) or other standard anti-EGFR antibodies and the response to the EGFR inhibitors.Method:In this study, we investigated the potential of our anti-EGFR monoclonal antibodies (mAbs; ICR9, ICR10, ICR16) for immunohistochemical diagnosis of wild-type EGFR and/or the type-III deletion mutant form of EGFR (EGFRvIII) in formalin-fixed, paraffin-embedded human tumour specimens.Results:We found that the anti-EGFR mAb in the EGFR PharmDx kit stained both wild-type and EGFRvIII-expressing cells in formalin-fixed, paraffin-embedded sections. This pattern of EGFR immunostaining was also found with our anti-EGFR mAb ICR16. In contrast, mAbs ICR10 and ICR9 were specific for the wild-type EGFR.Conclusion:We conclude that mAbs ICR9 and ICR10 are ideal tools for investigating the expression patterns of wild-type EGFR protein in tumour specimens using immunohistochemistry, and to determine their prognostic significance, as well as predictive value for response to therapy with EGFR antibodies.British Journal of Cancer advance online publication, 7 February 2012; doi:10.1038/bjc.2012.27 www.bjcancer.com

    Change in serum KL-6 level from baseline is useful for predicting life-threatening EGFR-TKIs induced interstitial lung disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high incidence of interstitial lung disease (ILD) has been reported in patients with advanced non-small cell lung cancer (NSCLC) treated with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), particularly in Japanese populations. A previous report from our laboratory demonstrated that KL-6 was a useful serum biomarker to assess the severity of drug-induced pneumonitis. Based on these observations, this study was conducted to evaluate the risk factors of EGFR-TKIs induced ILD and the usefulness of monitoring serum KL-6 levels in patients who developed EGFR-TKIs induced ILD in a large multi-institutional setting.</p> <p>Methods</p> <p>We retrospectively reviewed clinical records and radiographies of 341 patients with advanced NSCLCs who were treated with EGFR-TKIs, and analyzed risk factors for the development of EGFR-TKIs induced ILD. Changes of circulating levels of KL-6 were also evaluated in the patients who developed EGFR-TKIs induced ILD.</p> <p>Results</p> <p>Among the 341 patients included in this study, 20 (5.9%) developed EGFR-TKIs induced ILD, and 9 (2.6%) died from ILD. Univariate analyses revealed that only preexisting pulmonary fibrosis was a significant risk factor for the development of EGFR-TKIs induced ILD (<it>p </it>= 0.003). Absolute levels of circulating KL-6 at neither baseline nor the onset of ILD could discriminate between life-threatening and non-life threatening EGFR-TKIs induced ILDs. However, we found that the ratios of serum KL-6 levels just after the onset of EGFR-TKIs induced ILD to those at baseline could quite precisely distinguish survivors from non-survivors (<it>p </it>= 0.006) as well as acute interstitial pneumonia (AIP) pattern from non-AIP pattern (<it>p </it>= 0.005).</p> <p>Conclusions</p> <p>The results of this study strongly support the potential of KL-6 as a diagnostic biomarker for life-threatening EGFR-TKIs induced ILD. Monitoring of KL-6 is also useful to evaluate the progression and severity of EGFR-TKIs induced ILD.</p

    Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines

    Get PDF
    Introduction: Overexpression of the receptor tyrosine kinase HER2 has been reported in around 25% of human breast cancers, usually indicating a poor prognosis. As a result, HER2 has become a popular target for therapy. However, despite recent advances in HER2 targeted therapy, many patients still experience primary and secondary resistance to such treatments. It is therefore important to understand the underlying mechanism of resistance and to develop more effective therapeutic interventions for breast cancer. Methods: The sensitivity of a panel of seven breast cancer cell lines to treatment with various types HER-family inhibitors alone, or in combination with a selection of other tyrosine kinase inhibitors (TKIs) or chemotherapeutic agents was determined using the Sulforhodamine B colorimetric assay. Receptor expression, cell-cycle distribution, cell signalling and cell migration were determined using flow cytometry, Western blot and Incucyte Zoom Live-Cell Analysis System respectively. Results: Overall, breast cancer cells were more sensitive to treatment with the irreversible pan-HER family inhibitors, particularly afatinib and neratinib, than treatment with the first-generation reversible inhibitors. Of three HER-2 overexpressing cell lines in this panel, SKBr3 and BT474 were highly sensitive to treatment with HER-family inhibitors (IC50s as low as 3 nM), while MDA-MB-453 was relatively resistant (lowest IC50 = 0.11 μM). When the HER-family inhibitors were combined with other agents such as NVP-AEW541 (an IGF-1R inhibitor), dasatinib (a Src inhibitor) or crizotinib (a c-Met/ALK inhibitor), such combination produced synergistic effects in some of the cell lines examined. Interestingly, co-targeting of Src and HER-family members in MDA-MB-453 cells led to synergistic growth inhibition, suggesting the importance of Src in mediating resistance to HER2-targeting agents. Finally, treatment with the irreversible HER family blockers and dasatinib were also most effective at inhibiting the migration of breast cancer cells. Conclusion: We concluded that the irreversible inhibitors of HER-family members are generally more effective at inhibiting growth, downstream signalling and migration compared with reversible inhibitors, and that combining HER-family inhibitors with other TKIs such as dasatinib may have therapeutic advantages in certain breast cancer subtypes and warrants further investigation

    Detection of large molecular weight cytokeratin 8 as carrier protein of CA19–9 in non-small-cell lung cancer cell lines

    Get PDF
    It has been reported that cytokeratin 8 (CK8) is expressed in all non-small-cell lung cancers (NSCLC). We hypothesized that antigenic changes of CK8 may occur in some NSCLC cell lines. To prove this, Western immunoblot analysis using anti-human CK8 monoclonal antibodies as well as immunohistological staining of CK8 were performed in NSCLC cell lines. As a result, CK8 which had a higher molecular weight than recombinant CK8 was demonstrated in two of eight NSCLC cell lines. In addition, this CK8 contained antigenic epitopes of CA19–9. This CK8 with higher molecular weight, may have played a role in the process of invasion or metastasis of NSCLC. © 1999 Cancer Research Campaig

    Characterization of Apoptosis-Related Oxidoreductases from Neurospora crassa

    Get PDF
    The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins

    Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen

    Get PDF
    Superantigens activate T-cells by linking the T-cell receptor to MHC class II on antigen-presenting cells, and novel reactivity can be introduced by fusing the superantigen to a targeting molecule. Thus, an antibody-targeted superantigen, which activates T cells to destroy tumour cells, might be used as cancer therapy. A suitable target is the 5T4 oncofetal antigen, which is expressed on many carcinomas. We constructed a fusion protein from a Fab of a monoclonal antibody recognizing the 5T4 antigen, and an engineered superantigen. The recombinant product 5T4FabV13-SEAD227A bound the 5T4 antigen expressed on the human non-small-cell lung cancer cell line Calu-1 with a Kd of 1.2 nM while the substitution of Asp227 to Ala in the superantigen moiety reduced binding activity to MHC class II. 5T4FabV13-SEAD227A tumour reactivity was demonstrated in 7/7 NSCLC samples by immunohistochemistry, while normal tissue reactivity was low to moderate. 5T4FabV13-SEAD227A induced significant T-cell-dependent in vitro killing of sensitive 5T4 bearing Calu-1 cells, with maximum lysis at 10−10M, while the capacity to lyse MHC class II expressing cells was approximately 1000 times less effective. Immunotherapy of 5T4FabV13-SEAD227A against human NSCLC was investigated in SCID mice reconstituted with human peripheral blood mononuclear cells. Mice carrying intreperitoneally growing Calu-1 cells showed significant reduction in tumour mass and number after intravenous therapy with 5T4FabV13-SEAD227A. Thus, 5T4FabV13-SEAD227A has highly attractive properties for therapy of human NSCLC. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation

    Get PDF
    Cranial radiotherapy in children often leads to progressive cognitive decline. We have established a rodent model of irradiation-induced injury to the young brain. A single dose of 8 Gy was administered to the left hemisphere of postnatal day 10 (P10) mice. Harlequin (Hq) mice, carrying the hypomorphic apoptosis-inducing factor AIFHq mutation, express 60% less AIF at P10 and displayed significantly fewer dying cells in the subventricular zone (SVZ) 6 h after IR, compared with wild type (Wt) littermates. Irradiated cyclophilin A-deficient (CypA−/−) mice confirmed that CypA has an essential role in AIF-induced apoptosis after IR. Hq mice displayed no reduction in SVZ size 7 days after IR, whereas 48% of the SVZ was lost in Wt mice. The proliferation rate was lower in the SVZ of Hq mice. Cultured neural precursor cells from the SVZ of Hq mice displayed a slower proliferation rate and were more resistant to IR. IR preferentially kills proliferating cells, and the slower proliferation rate in the SVZ of Hq mice may, at least partly, explain the protective effect of the Hq mutation. Together, these results indicate that targeting AIF may provide a fruitful strategy for protection of normal brain tissue against the detrimental side effects of IR

    FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure

    Get PDF
    Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis
    corecore