26 research outputs found
Struktur und Eigenschaften von TiO2-Schichten, abgeschieden durch reaktive plasmaaktivierte Elektronenstrahl-Bedampfung
Titandioxidschichten wurden mittels reaktiver Elektronenstrahlbedampfung und mit reaktiver plasmaaktivierter Bedampfung bei hohen Beschichtungsraten abgeschieden. Die Plasmaaktivierung erfolgte mittels einer diffusen katodischen Bogenentladung. Die gebildeten Phasen – amorph, Anatas oder Rutil – sind von Substrattemperatur und ratebezogenem Sauerstoffdruck abhängig. Für die Bildung der kristallinen Phasen wird eine Substrattemperatur von mindestens 150 bis 200 °C benötigt. Ohne Plasmaaktivierung abgeschiedene Schichten sind durch eine hohe Porosität und einen Sauerstoffüberschuss gekennzeichnet. Mit Plasmaaktivierung werden dichtere Schichten mit stöchiometrischer Zusammensetzung abgeschieden. Damit verbunden sind deutlich höhere Werte für Brechungsindex, Härte und E-Modul, die mit den Bulkwerten der jeweiligen Phasen vergleichbar sind. Die kristallinen Schichten, insbesondere die mit Plasmaaktivierung abgeschiedenen Anatas-Schichten, zeichnen sich durch photoinduzierte Hydrophilie und hohe photokatalytische Aktivität aus. Die Beschichtungsrate ist mit 30 bis 70 nm/s ein bis zwei Größenordnungen gegenüber Magnetronsputtern höher. Die plasmaaktivierte Bedampfung mittels diffuser katodischer Bogenentladung eröffnet damit die produktive Abscheidung von dichten Titandioxidschichten bei hohen Beschichtungsraten auf großen Flächen für verschiedenste Anwendungen, z. B. als optische Schicht oder für Antibeschlagsausrüstung
Struktur und Eigenschaften von TiO2-Schichten, abgeschieden durch reaktive plasmaaktivierte Elektronenstrahl-Bedampfung
Titandioxidschichten wurden mittels reaktiver Elektronenstrahlbedampfung und mit reaktiver plasmaaktivierter Bedampfung bei hohen Beschichtungsraten abgeschieden. Die Plasmaaktivierung erfolgte mittels einer diffusen katodischen Bogenentladung. Die gebildeten Phasen – amorph, Anatas oder Rutil – sind von Substrattemperatur und ratebezogenem Sauerstoffdruck abhängig. Für die Bildung der kristallinen Phasen wird eine Substrattemperatur von mindestens 150 bis 200 °C benötigt. Ohne Plasmaaktivierung abgeschiedene Schichten sind durch eine hohe Porosität und einen Sauerstoffüberschuss gekennzeichnet. Mit Plasmaaktivierung werden dichtere Schichten mit stöchiometrischer Zusammensetzung abgeschieden. Damit verbunden sind deutlich höhere Werte für Brechungsindex, Härte und E-Modul, die mit den Bulkwerten der jeweiligen Phasen vergleichbar sind. Die kristallinen Schichten, insbesondere die mit Plasmaaktivierung abgeschiedenen Anatas-Schichten, zeichnen sich durch photoinduzierte Hydrophilie und hohe photokatalytische Aktivität aus. Die Beschichtungsrate ist mit 30 bis 70 nm/s ein bis zwei Größenordnungen gegenüber Magnetronsputtern höher. Die plasmaaktivierte Bedampfung mittels diffuser katodischer Bogenentladung eröffnet damit die produktive Abscheidung von dichten Titandioxidschichten bei hohen Beschichtungsraten auf großen Flächen für verschiedenste Anwendungen, z. B. als optische Schicht oder für Antibeschlagsausrüstung
Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker
During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m of silicon sensors was to compare sensors of baseline thickness (about 300 ÎĽm) to thinned sensors (about 240 ÎĽm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 Ă— 10 n/cm. The measurement results demonstrate that sensors with about 300 ÎĽm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker
Struktur und Eigenschaften von TiO2-Schichten, abgeschieden durch reaktive plasmaaktivierte Elektronenstrahl-Bedampfung
Titandioxidschichten wurden mittels reaktiver Elektronenstrahlbedampfung und mit reaktiver plasmaaktivierter Bedampfung bei hohen Beschichtungsraten abgeschieden. Die Plasmaaktivierung erfolgte mittels einer diffusen katodischen Bogenentladung. Die gebildeten Phasen – amorph, Anatas oder Rutil – sind von Substrattemperatur und ratebezogenem Sauerstoffdruck abhängig. Für die Bildung der kristallinen Phasen wird eine Substrattemperatur von mindestens 150 bis 200 °C benötigt. Ohne Plasmaaktivierung abgeschiedene Schichten sind durch eine hohe Porosität und einen Sauerstoffüberschuss gekennzeichnet. Mit Plasmaaktivierung werden dichtere Schichten mit stöchiometrischer Zusammensetzung abgeschieden. Damit verbunden sind deutlich höhere Werte für Brechungsindex, Härte und E-Modul, die mit den Bulkwerten der jeweiligen Phasen vergleichbar sind. Die kristallinen Schichten, insbesondere die mit Plasmaaktivierung abgeschiedenen Anatas-Schichten, zeichnen sich durch photoinduzierte Hydrophilie und hohe photokatalytische Aktivität aus. Die Beschichtungsrate ist mit 30 bis 70 nm/s ein bis zwei Größenordnungen gegenüber Magnetronsputtern höher. Die plasmaaktivierte Bedampfung mittels diffuser katodischer Bogenentladung eröffnet damit die produktive Abscheidung von dichten Titandioxidschichten bei hohen Beschichtungsraten auf großen Flächen für verschiedenste Anwendungen, z. B. als optische Schicht oder für Antibeschlagsausrüstung
Struktur und Eigenschaften von TiO2-Schichten, abgeschieden durch reaktive plasmaaktivierte Elektronenstrahl-Bedampfung
Titandioxidschichten wurden mittels reaktiver Elektronenstrahlbedampfung und mit reaktiver plasmaaktivierter Bedampfung bei hohen Beschichtungsraten abgeschieden. Die Plasmaaktivierung erfolgte mittels einer diffusen katodischen Bogenentladung. Die gebildeten Phasen – amorph, Anatas oder Rutil – sind von Substrattemperatur und ratebezogenem Sauerstoffdruck abhängig. Für die Bildung der kristallinen Phasen wird eine Substrattemperatur von mindestens 150 bis 200 °C benötigt. Ohne Plasmaaktivierung abgeschiedene Schichten sind durch eine hohe Porosität und einen Sauerstoffüberschuss gekennzeichnet. Mit Plasmaaktivierung werden dichtere Schichten mit stöchiometrischer Zusammensetzung abgeschieden. Damit verbunden sind deutlich höhere Werte für Brechungsindex, Härte und E-Modul, die mit den Bulkwerten der jeweiligen Phasen vergleichbar sind. Die kristallinen Schichten, insbesondere die mit Plasmaaktivierung abgeschiedenen Anatas-Schichten, zeichnen sich durch photoinduzierte Hydrophilie und hohe photokatalytische Aktivität aus. Die Beschichtungsrate ist mit 30 bis 70 nm/s ein bis zwei Größenordnungen gegenüber Magnetronsputtern höher. Die plasmaaktivierte Bedampfung mittels diffuser katodischer Bogenentladung eröffnet damit die produktive Abscheidung von dichten Titandioxidschichten bei hohen Beschichtungsraten auf großen Flächen für verschiedenste Anwendungen, z. B. als optische Schicht oder für Antibeschlagsausrüstung
Knowing the Mississippi
We asked a diverse group of river people to respond to the prompt “How did you come to know the Mississippi River? What does it mean, to you, to know the Mississippi River?” We present below a few of the responses, in no particular order
Influence of rf substrate bias on density and mechanical properties of sputtered SiO2 thin films for SAW applications
Amorphous SiO2 layers have been deposited on silicon and glass substrate by reactive magnetron sputtering. The influence of rf substrate bias on coating density and on further mechanical properties of the thin films as e.g. mechanical stress, hardness and Young’s modulus was investigated. The results are correlated to a variation of the Si-O-Sibinding angle caused by the densification of the material. The precise adjustment of these thin film properties opens a wide potential for reactive sputtered coatings for ambitious applications such as e.g. surface acoustic wave (SAW) filters
High Rate Deposition of Piezoelectric AlScN Films by Reactive Magnetron Sputtering from AlSc Alloy Targets on Large Area
This paper reports on the deposition and characterization of piezoelectric AlXSc1-XN (further: AlScN) films on Si substrates using AlSc alloy targets with 30 at.% Sc. Films were deposited on a Ø200 mm area with deposition rates of 200 nm/min using a reactive magnetron sputtering process with a unipolar–bipolar hybrid pulse mode of FEP. The homogeneity of film composition, structural properties and piezoelectric properties were investigated depending on process parameters, especially the pulse mode of powering in unipolar–bipolar hybrid pulse mode operation. Characterization methods include energy-dispersive spectrometry of X-ray (EDS), X-ray diffraction (XRD), piezoresponse force microscopy (PFM) and double-beam laser interferometry (DBLI). The film composition was Al0.695Sc0.295N. The films showed good homogeneity of film structure with full width at half maximum (FWHM) of AlScN(002) rocking curves at 2.2 ± 0.1° over the whole coating area when deposited with higher share of unipolar pulse mode during film growth. For a higher share of bipolar pulse mode, the films showed a much larger c-lattice parameter in the center of the coating area, indicating high in-plane compressive stress in the films. Rocking curve FWHM also showed similar values of 1.5° at the center to 3° at outer edge. The piezoelectric characterization method revealed homogenous d33,f of 11–12 pm/V for films deposited at a high share of unipolar pulse mode and distribution of 7–10 pm/V for a lower share of unipolar pulse mode. The films exhibited ferroelectric switching behavior with coercive fields of around 3–3.5 MV/cm and polarization of 80–120 µC/cm²