5,547 research outputs found

    Inhomogeneous cosmologies with Q-matter and varying Λ\Lambda

    Full text link
    Starting from the inhomogeneous shear--free Nariai metric we show, by solving the Einstein--Klein--Gordon field equations, how a self--interacting scalar field plus a material fluid, a variable cosmological term and a heat flux can drive the universe to its currently observed state of homogeneous accelerated expansion. A quintessence scenario where power-law inflation takes place for a string-motivated potential in the late--time dominated field regime is proposed.Comment: 11 pages, Revtex. To be published in Physical Review

    Bianchi Type I Cosmology in Generalized Saez-Ballester Theory via Noether Gauge Symmetry

    Full text link
    In this paper, we investigate the generalized Saez-Ballester scalar-tensor theory of gravity via Noether gauge symmetry (NGS) in the background of Bianchi type I cosmological spacetime. We start with the Lagrangian of our model and calculate its gauge symmetries and corresponding invariant quantities. We obtain the potential function for the scalar field in the exponential form. For all the symmetries obtained, we determine the gauge functions corresponding to each gauge symmmetry which include constant and dynamic gauge. We discuss cosmological implications of our model and show that it is compatible with the observational data.Comment: 13 pages, 2 figures, accepted for publication in 'European Physical Journal C

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff

    Full text link
    In this work we consider the entropy-corrected version of interacting holographic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two corrections of entropy so-called logarithmic 'LEC' and power-law 'PLEC' in HDE model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to dark energy densities uu, equation of state parameter wDw_D and deceleration parameter qq are obtained. We show that the cosmic coincidence is satisfied for both interacting models. By studying the effect of interaction in EoS parameter, we see that the phantom divide may be crossed and also find that the interacting models can drive an acceleration expansion at the present and future, while in non-interacting case, this expansion can happen only at the early time. The graphs of deceleration parameter for interacting models, show that the present acceleration expansion is preceded by a sufficiently long period deceleration at past. Moreover, the thermodynamical interpretation of interaction between LECHDE and dark matter is described. We obtain a relation between the interaction term of dark components and thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is also calculated.Comment: 20 pages, 8 figures, figures changed, some Ref. is added, changed some sentences, accepted by General relativity and gravitation (GERG
    corecore