16 research outputs found
Selective inhibition of divergent seryl-tRNA synthetases by serine analogues.
Seryl-tRNA synthetases (SerRSs) fall into two distinct evolutionary groups of enzymes, bacterial and methanogenic. These two types of SerRSs display only minimal sequence similarity, primarily within the class II conserved motifs, and possess distinct modes of tRNA(Ser) recognition. In order to determine whether the two types of SerRSs also differ in their recognition of the serine substrate, we compared the sensitivity of the representative methanogenic and bacterial-type SerRSs to serine hydroxamate and two previously unidentified inhibitors, serinamide and serine methyl ester. Our kinetic data showed selective inhibition of the methanogenic SerRS by serinamide, suggesting a lack of mechanistic uniformity in serine recognition between the evolutionarily distinct SerRSs
Stability of glass elements: TG12 final report
Because of their characteristic high slenderness ratios, glass elements are usually relatively sensitive to buckling phenomena. As regards laminated glass components in particular, for instance effects of temperature variations or load duration complicate the correct estimation and prediction of their buckling response, which is already conditioned by slenderness ratios and by limited tensile strengths. In this context, within COST Action TU0905 ‘Structural glass’, the Task Group 12 ‘Stability’ focuses its main networking activity on the collection, assessment, discussion and validation of existing analytical models, as well as on the development of new techniques for a practical buckling analysis and verification of structural glass elements. In the paper, an overview of main activities and results is provided
On the Mechanism and Origin of Isoleucyl-tRNA Synthetase Editing against Norvaline.
Aminoacyl-tRNA synthetases (aaRSs), the enzymes responsible for coupling tRNAs to their cognate amino acids, minimize translational errors by intrinsic hydrolytic editing. Here, we compared norvaline (Nva), a linear amino acid not coded for protein synthesis, to the proteinogenic, branched valine (Val) in their propensity to mistranslate isoleucine (Ile) in proteins. We show that in the synthetic site of isoleucyl-tRNA synthetase (IleRS), Nva and Val are activated and transferred to tRNA at similar rates. The efficiency of the synthetic site in pre-transfer editing of Nva and Val also appears to be similar. Post-transfer editing was, however, more rapid with Nva and consequently IleRS misaminoacylates Nva-tRNAIle at slower rate than Val-tRNAIle. Accordingly, an Escherichia coli strain lacking IleRS post-transfer editing misincorporated Nva and Val in the proteome to a similar extent and at the same Ile positions. However, Nva mistranslation inflicted higher toxicity than Val, in agreement with IleRS editing being optimized for hydrolysis of Nva-tRNAIle. Furthermore, we found that the evolutionary-related IleRS, leucyl- and valyl-tRNA synthetases (I/L/VRSs), all efficiently hydrolyze Nva-tRNAs even when editing of Nva seems redundant. We thus hypothesize that editing of Nva-tRNAs had already existed in the last common ancestor of I/L/VRSs, and that the editing domain of I/L/VRSs had primarily evolved to prevent infiltration of Nva into modern proteins
An Archaeal tRNA-Synthetase Complex that Enhances Aminoacylation under Extreme Conditions*
Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA synthetase (MtArgRS) as an interacting partner of MtSerRS. Surface plasmon resonance confirmed stable complex formation, with a dissociation constant (KD) of 250 nm. Formation of the MtSerRS·MtArgRS complex was further supported by the ability of GST-MtArgRS to co-purify MtSerRS and by coelution of the two enzymes during gel filtration chromatography. The MtSerRS·MtArgRS complex also contained tRNAArg, consistent with the existence of a stable ribonucleoprotein complex active in aminoacylation. Steady-state kinetic analyses revealed that addition of MtArgRS to MtSerRS led to an almost 4-fold increase in the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that formation of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions