18,828 research outputs found
Observational evidence for stochastic biasing
We show that the galaxy density in the Las Campanas Redshift Survey (LCRS)
cannot be perfectly correlated with the underlying mass distribution since
various galaxy subpopulations are not perfectly correlated with each other,
even taking shot noise into account. This rules out the hypothesis of simple
linear biasing, and suggests that the recently proposed stochastic biasing
framework is necessary for modeling actual data.Comment: 4 pages, with 2 figures included. Minor revisions to match accepted
ApJL version. Links and color fig at
http://www.sns.ias.edu/~max/r_frames.html or from [email protected]
Local U(1) symmetry in Y(so(5)) associated with Massless Thirring Model and its Bethe Ansatz
The Massless Thirring model associated with SO(5) is solved in terms of the
local U(1) symmetry. The local U(1) symmetry is related to q-deformation of
four-component field operators due to the nonlinear interaction for differently
internal degree of freedom. The Bethe ansatz wavefunction is also discussed. In
addition, the local U(1) symmetry in the Yangian associated with
SO(5)(Y(SO(5))) is explored.Comment: 10 pages, no figure
Detecting the Earliest Galaxies Through Two New Sources of 21cm Fluctuations
The first galaxies that formed at a redshift ~20-30 emitted continuum photons
with energies between the Lyman-alpha and Lyman limit wavelengths of hydrogen,
to which the neutral universe was transparent except at the Lyman-series
resonances. As these photons redshifted or scattered into the Lyman-alpha
resonance they coupled the spin temperature of the 21cm transition of hydrogen
to the gas temperature, allowing it to deviate from the microwave background
temperature. We show that the fluctuations in the radiation emitted by the
first galaxies produced strong fluctuations in the 21cm flux before the
Lyman-alpha coupling became saturated. The fluctuations were caused by biased
inhomogeneities in the density of galaxies, along with Poisson fluctuations in
the number of galaxies. Observing the power-spectra of these two sources would
probe the number density of the earliest galaxies and the typical mass of their
host dark matter halos. The enhanced amplitude of the 21cm fluctuations from
the era of Lyman-alpha coupling improves considerably the practical prospects
for their detection.Comment: 11 pages, 7 figures, ApJ, published. Normalization fixed in top
panels of Figures 4-
Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts
We consider the effects of inhomogeneous reionization on the distribution of
galaxies at high redshifts. Modulation of the formation process of the ionizing
sources by large scale density modes makes reionization inhomogeneous and
introduces a spread to the reionization times of different regions with the
same size. After sources photo-ionize and heat these regions to a temperature
\ga 10^4K at different times, their temperatures evolve as the ionized
intergalactic medium (IGM) expands. The varying IGM temperature makes the
minimum mass of galaxies spatially non-uniform with a fluctuation amplitude
that increases towards small scales. These scale-dependent fluctuations modify
the shape of the power spectrum of low-mass galaxies at high redshifts in a way
that depends on the history of reionization. The resulting distortion of the
primordial power spectrum is significantly larger than changes associated with
uncertainties in the inflationary parameters, such as the spectral index of the
scalar power spectrum or the running of the spectral index. Future surveys of
high-redshift galaxies will offer a new probe of the thermal history of the IGM
but might have a more limited scope in constraining inflation.Comment: 8 pages, 5 figures, replaced to match version accepted by Ap
Correlations in the Far Infrared Background
We compute the expected angular power spectrum of the cosmic Far Infrared
Background (FIRB). We find that the signal due to source correlations dominates
the shot--noise for \ell \la 1000 and results in anisotropies with rms
amplitudes between 5% and 10% of the mean
for l \ga 150. The angular power spectrum depends on several unknown
quantities, such as the UV flux density evolution, optical properties of the
dust, biasing of the sources of the FIRB, and cosmological parameters. However,
when we require our models to reproduce the observed DC level of the FIRB, we
find that the anisotropy is at least a few percent in all cases. This
anisotropy is detectable with proposed instruments, and its measurement will
provide strong constraints on models of galaxy evolution and large-scale
structure at redshifts up to at least .Comment: 7 pages, 4 figures included, uses emulateapj.sty. More models
explored than in original version. Accepted for publication in Ap
Slow light in paraffin-coated Rb vapor cells
We present preliminary results from an experimental study of slow light in
anti-relaxation-coated Rb vapor cells, and describe the construction and
testing of such cells. The slow ground state decoherence rate allowed by coated
cell walls leads to a dual-structured electromagnetically induced transparency
(EIT) spectrum with a very narrow (<100 Hz) transparency peak on top of a broad
pedestal. Such dual-structure EIT permits optical probe pulses to propagate
with greatly reduced group velocity on two time scales. We discuss ongoing
efforts to optimize the pulse delay in such coated cell systems.Comment: 6 pages, 6 figures, submitted to Journal of Modern Optic
Power Spectrum Covariance of Weak Gravitational Lensing
Weak gravitational lensing observations probe the spectrum and evolution of
density fluctuations and the cosmological parameters which govern them. At low
redshifts, the non-linear gravitational evolution of large scale structure
produces a non-Gaussian covariance in the shear power spectrum measurements
that affects their translation into cosmological parameters. Using the dark
matter halo approach, we study the covariance of binned band power spectrum
estimates and the four point function of the dark matter density field that
underlies it. We compare this semi-analytic estimate to results from N-body
numerical simulations and find good agreement. We find that for a survey out to
z ~ 1, the power spectrum covariance increases the errors on cosmological
parameters determined under the Gaussian assumption by about 15%.Comment: 11 ApJ pages, 6 figures; submitted to Ap
The Far-Infrared Background Correlation with CMB Lensing
The intervening large--scale structure distorts cosmic microwave background
(CMB) anisotropies via gravitational lensing. The same large--scale structure,
traced by dusty star--forming galaxies, also induces anisotropies in the
far--infrared background (FIRB). We investigate the resulting inter--dependence
of the FIRB and CMB with a halo model for the FIRB. In particular, we calculate
the cross--correlation between the lensing potential and the FIRB. The lensing
potential can be quadratically estimated from CMB temperature and/or
polarization maps. We show that the cross--correlation can be measured with
high signal--to--noise with data from the Planck Surveyor. We discuss how such
a measurement can be used to understand the nature of FIRB sources and their
relation to the distribution of dark matter.Comment: 9 pages, 5 figures, submitted to Ap
- âŠ