17 research outputs found

    Breaking the Spurious Causality of Conditional Generation via Fairness Intervention with Corrective Sampling

    Full text link
    To capture the relationship between samples and labels, conditional generative models often inherit spurious correlations from the training dataset. This can result in label-conditional distributions that are imbalanced with respect to another latent attribute. To mitigate this issue, which we call spurious causality of conditional generation, we propose a general two-step strategy. (a) Fairness Intervention (FI): emphasize the minority samples that are hard to generate due to the spurious correlation in the training dataset. (b) Corrective Sampling (CS): explicitly filter the generated samples and ensure that they follow the desired latent attribute distribution. We have designed the fairness intervention to work for various degrees of supervision on the spurious attribute, including unsupervised, weakly-supervised, and semi-supervised scenarios. Our experimental results demonstrate that FICS can effectively resolve spurious causality of conditional generation across various datasets.Comment: TMLR 202

    S-CLIP: Semi-supervised Vision-Language Learning using Few Specialist Captions

    Full text link
    Vision-language models, such as contrastive language-image pre-training (CLIP), have demonstrated impressive results in natural image domains. However, these models often struggle when applied to specialized domains like remote sensing, and adapting to such domains is challenging due to the limited number of image-text pairs available for training. To address this, we propose S-CLIP, a semi-supervised learning method for training CLIP that utilizes additional unpaired images. S-CLIP employs two pseudo-labeling strategies specifically designed for contrastive learning and the language modality. The caption-level pseudo-label is given by a combination of captions of paired images, obtained by solving an optimal transport problem between unpaired and paired images. The keyword-level pseudo-label is given by a keyword in the caption of the nearest paired image, trained through partial label learning that assumes a candidate set of labels for supervision instead of the exact one. By combining these objectives, S-CLIP significantly enhances the training of CLIP using only a few image-text pairs, as demonstrated in various specialist domains, including remote sensing, fashion, scientific figures, and comics. For instance, S-CLIP improves CLIP by 10% for zero-shot classification and 4% for image-text retrieval on the remote sensing benchmark, matching the performance of supervised CLIP while using three times fewer image-text pairs.Comment: NeurIPS 202

    MASKER: Masked Keyword Regularization for Reliable Text Classification

    Full text link
    Pre-trained language models have achieved state-of-the-art accuracies on various text classification tasks, e.g., sentiment analysis, natural language inference, and semantic textual similarity. However, the reliability of the fine-tuned text classifiers is an often underlooked performance criterion. For instance, one may desire a model that can detect out-of-distribution (OOD) samples (drawn far from training distribution) or be robust against domain shifts. We claim that one central obstacle to the reliability is the over-reliance of the model on a limited number of keywords, instead of looking at the whole context. In particular, we find that (a) OOD samples often contain in-distribution keywords, while (b) cross-domain samples may not always contain keywords; over-relying on the keywords can be problematic for both cases. In light of this observation, we propose a simple yet effective fine-tuning method, coined masked keyword regularization (MASKER), that facilitates context-based prediction. MASKER regularizes the model to reconstruct the keywords from the rest of the words and make low-confidence predictions without enough context. When applied to various pre-trained language models (e.g., BERT, RoBERTa, and ALBERT), we demonstrate that MASKER improves OOD detection and cross-domain generalization without degrading classification accuracy. Code is available at https://github.com/alinlab/MASKER.Comment: AAAI 2021. First two authors contributed equall

    Discovering and Mitigating Visual Biases through Keyword Explanation

    Full text link
    Addressing biases in computer vision models is crucial for real-world AI deployments. However, mitigating visual biases is challenging due to their unexplainable nature, often identified indirectly through visualization or sample statistics, which necessitates additional human supervision for interpretation. To tackle this issue, we propose the Bias-to-Text (B2T) framework, which interprets visual biases as keywords. Specifically, we extract common keywords from the captions of mispredicted images to identify potential biases in the model. We then validate these keywords by measuring their similarity to the mispredicted images using a vision-language scoring model. The keyword explanation form of visual bias offers several advantages, such as a clear group naming for bias discovery and a natural extension for debiasing using these group names. Our experiments demonstrate that B2T can identify known biases, such as gender bias in CelebA, background bias in Waterbirds, and distribution shifts in ImageNet-R/C. Additionally, B2T uncovers novel biases in larger datasets, such as Dollar Street and ImageNet. For example, we discovered a contextual bias between "bee" and "flower" in ImageNet. We also highlight various applications of B2T keywords, including debiased training, CLIP prompting, and model comparison.Comment: CVPR 2024. First two authors contributed equall

    Diffusion Probabilistic Models for Structured Node Classification

    Full text link
    This paper studies structured node classification on graphs, where the predictions should consider dependencies between the node labels. In particular, we focus on solving the problem for partially labeled graphs where it is essential to incorporate the information in the known label for predicting the unknown labels. To address this issue, we propose a novel framework leveraging the diffusion probabilistic model for structured node classification (DPM-SNC). At the heart of our framework is the extraordinary capability of DPM-SNC to (a) learn a joint distribution over the labels with an expressive reverse diffusion process and (b) make predictions conditioned on the known labels utilizing manifold-constrained sampling. Since the DPMs lack training algorithms for partially labeled data, we design a novel training algorithm to apply DPMs, maximizing a new variational lower bound. We also theoretically analyze how DPMs benefit node classification by enhancing the expressive power of GNNs based on proposing AGG-WL, which is strictly more powerful than the classic 1-WL test. We extensively verify the superiority of our DPM-SNC in diverse scenarios, which include not only the transductive setting on partially labeled graphs but also the inductive setting and unlabeled graphs

    Gesture-to-gesture translation in the wild via category-independent conditional maps

    Full text link
    Recent works have shown Generative Adversarial Networks (GANs) to be particularly effective in image-to-image translations. However, in tasks such as body pose and hand gesture translation, existing methods usually require precise annotations, e.g. key-points or skeletons, which are time-consuming to draw. In this work, we propose a novel GAN architecture that decouples the required annotations into a category label - that specifies the gesture type - and a simple-to-draw category-independent conditional map - that expresses the location, rotation and size of the hand gesture. Our architecture synthesizes the target gesture while preserving the background context, thus effectively dealing with gesture translation in the wild. To this aim, we use an attention module and a rolling guidance approach, which loops the generated images back into the network and produces higher quality images compared to competing works. Thus, our GAN learns to generate new images from simple annotations without requiring key-points or skeleton labels. Results on two public datasets show that our method outperforms state of the art approaches both quantitatively and qualitatively. To the best of our knowledge, no work so far has addressed the gesture-to-gesture translation in the wild by requiring user-friendly annotations
    corecore