18 research outputs found

    The “one-two punch” of isoprenoids to inflammation

    Get PDF

    Potential of Tocotrienols in the Prevention and Therapy of Alzheimer’s Disease

    Get PDF
    Currently there is no cure for Alzheimer’s disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylationdependent AD pathogenesis. The anti-inflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation- suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment

    d-β-Tocotrienol-mediated cell cycle arrest and apoptosis in human melanoma cells

    Get PDF
    Background: The rate-limiting enzyme of the mevalonate pathway, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, provides essential intermediates for the prenylation or dolichylation of growth-related proteins. d-δ-Tocotrienol, a post-transcriptional downregulator of HMG CoA reductase, suppresses the proliferation of murine B16 melanoma cells. Dietary d-δ- tocotrienol suppresses the growth of implanted B16 melanomas without toxicity to host mice. Materials and Methods: The proliferation of human A2058 and A375 melanoma cells following a 72 h incubation in 96-well plates was measured by CellTiter 96® Aqueous One Solution. Cell cycle distribution was determined by flow cytometry. Fluorescence microscopy following acridine orange and ethidium bromide dual staining and procaspase-3 cleavage were used to detect apoptosis. Western-blot was employed to measure protein expression. Results: d-δ-Tocotrienol induced dose-dependent suppression of cell proliferation with 50% inhibitory concentrations (IC50) of 37.5±1.4 (A2058) and 22.3±1.8 (A375) μmol/l, respectively (data are reported as mean±standard deviation). d-δ-Tocotrienol-mediated cell cycle arrest at the G1 phase was accompanied by reduced expression of cyclin-dependent kinase 4. Concomitantly, d- δ-tocotrienol induced caspase-3 activation and apoptosis. The impact of d-δ-tocotrienol on A2058 cell proliferation was potentiated by lovastatin (IC50=3.1±0.5 μmol/l), a competitive inhibitor of HMG CoA reductase. Conclusion: d-δ-Tocotrienol may have potential application in melanoma chemoprevention and/or therapy

    The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics

    Get PDF
    While the unique metabolic activities of malignant tissues as potential targets for cancer therapeutics has been the subject of several recent reviews, the role of cholesterol metabolism in this context is yet to be fully explored. Cholesterol is an essential component of mammalian cell membranes as well as a precursor of bile acids and steroid hormones. The hypothesis that cancer cells need excess cholesterol and intermediates of the cholesterol biosynthesis pathway to maintain a high level of proliferation is well accepted, however the mechanisms by which malignant cells and tissues reprogram cholesterol synthesis, uptake and efflux are yet to be fully elucidated as potential therapeutic targets. High and low density plasma lipoproteins are the likely major suppliers of cholesterol to cancer cells and tumors, potentially via receptor mediated mechanisms. This review is primarily focused on the role(s) of lipoproteins in carcinogenesis, and their future roles as drug delivery vehicles for targeted cancer chemotherapy

    Conjugated Linoleic Acid Supplementation Does Not Reduce Visceral Adipose Tissue in Middle-Aged Men Engaged in a Resistance-Training Program

    Get PDF
    Conjugated linoleic acid (CLA) supplementation has shown convincing effects at reducing body fat in animals; yet human study results have been somewhat inconclusive. The purpose of this study is to determine whether four weeks of CLA supplementation, the approximate length of a commercial package, can result in a positive change in visceral adipose tissue in resistance-trained middle-aged men. Thirty overweight and moderately obese, but otherwise healthy male subjects (aged 35 to 55 years) currently involved in resistance training, were randomly assigned into CLA and placebo groups in a double-blind, placebo controlled approach. The study lasted for 12 weeks and consisted of three four-week periods. During the first four weeks (run-in period) each subject received placebo (4 g safflower oil). Throughout the next four weeks (supplementation period), the placebo group continued receiving placebo, while the CLA group received 3.2 g/d of CLA. During the final four weeks (run-out period) all subjects received the placebo. Computed tomography (CT) scans were used to measure visceral adipose tissue (VAT) at weeks 4, 8 and 12. No significant reduction in VAT cross-sectional area was determined in the CLA group during the study. On the contrary, a significant reduction in cross-sectional area of VAT of 23.12 cm2 during the supplementation period was measured in the placebo group, which was abated during the run-out period. Our results suggest that CLA supplementation of 3.2 g/d for four weeks does not promote decreases in VAT in middle-aged men currently participating in a resistance-training program

    Effects of bariatric surgery on adipokine-induced inflammation and insulin resistance

    Get PDF
    Over a third of the US population is obese and at high risk for developing type 2 diabetes, insulin resistance, and other metabolic disorders. Obesity is considered a chronic lowgrade inflammatory condition that is primarily attributed to expansion and inflammation of adipose tissues. Indeed, adipocytes produce and secrete numerous proinflammatory and anti-inflammatory cytokines known as adipokines.When the balance of these adipokines is shifted toward higher production of proinflammatory factors, local inflammation within adipose tissues and subsequently systemic inflammation occur. These adipokines including leptin, visfatin, resistin, apelin, vaspin, and retinol binding protein-4 can regulate inflammatory responses and contribute to the pathogenesis of diabetes.These effects are mediated by key inflammatory signaling molecules including activated serine kinases such as c-Jun N-terminal kinase and serine kinases inhibitor κB kinase and insulin signaling molecules including insulin receptor substrates, protein kinase B (PKB, also known as Akt), and nuclear factor kappa B. Bariatric surgery can decrease body weight and improve insulin resistance in morbidly obese subjects. However, despite reports suggesting reduced inflammation and weight-independent effects of bariatric surgery on glucose metabolism, mechanisms behind such improvements are not yet well understood. This review article focuses on some of these novel adipokines and discusses their changes after bariatric surgery and their relationship to insulin resistance, fat mass, inflammation, and glucose homeostasis

    The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins

    Get PDF
    The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy
    corecore