3 research outputs found

    Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller

    No full text
    The article presents experimental results of the metal-based and carbon nanotube additives influence on sorption kinetics of a silica-gel-based adsorption bed in an adsorption chiller. The purpose of the doping is to improve the efficiency of sorption processes within the bed by use of metallic and non-metallic additives characterized by higher thermal diffusivity than basic adsorption material. The higher the thermal conductivity of the bed, the faster the sorption processes take place, which directly translates into greater efficiency of the refrigerator. In this study, sorption kinetics of pure silica gel sorbent doped with a given amount of aluminum (Al) and copper (Cu) powders and carbon nanotubes (CNT) were analyzed. The tests were performed on DVS Dynamic Gravimetric Vapor Sorption System apparatus used for dynamic vapor sorption measurements. A decrease in the amount of adsorbed water was observed with an increase in the mass share of the additives in the performed studies. Experimental results show that, CNTs seems to be the most promising additive as the sorption process time was reduced with the smallest decrease in water uptake. Any significant reduction of adsorption time was noted in case of the Al addition. Whereas, in case of Cu doping, delamination of the mixture was observed

    Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes

    No full text
    Thermochemical conversion of biomass waste is a high potential option for increasing usage of renewable energy sources and transferring wastes into the circular economy. This work focuses on the evaluation of the energetic and adsorption properties of solid residue (char) of the gasification process. Gasification experiments of biomass wastes (wheat straw, hay and pine sawdust) were carried out in a vertical fixed bed reactor, under a CO2 atmosphere and at various temperatures (800, 900 and 1000 °C). The analysis of the energy properties of the obtained chars included elemental and thermogravimetric (TGA) analysis. TGA results indicated that the chars have properties similar to those of coal; subjected data were used to calculate key combustion parameters. As part of the analysis of adsorption properties, BET, SEM, FTIR and dynamic methanol vapor sorption tests were conducted. The specific surface area has risen from 0.42–1.91 m2/g (biomass) to 419–891 m2/g (char). FTIR spectroscopy confirmed the influence of gasification on the decomposition of characteristic chemical compounds for biomass. Methanol sorption has revealed for the 900 °C chars of pine sawdust the highest sorption capacity and its mass change was 24.15% at P/P0 = 90%. Selected chars might be an appropriate material for volatile organic compounds sorption
    corecore