169 research outputs found

    Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect

    Full text link
    We analyse the unfolding pathway of biomolecules comprising several independent modules in pulling experiments. In a recently proposed model, a critical velocity vcv_{c} has been predicted, such that for pulling speeds v>vcv>v_{c} it is the module at the pulled end that opens first, whereas for v<vcv<v_{c} it is the weakest. Here, we introduce a variant of the model that is closer to the experimental setup, and discuss the robustness of the emergence of the critical velocity and of its dependence on the model parameters. We also propose a possible experiment to test the theoretical predictions of the model, which seems feasible with state-of-art molecular engineering techniques.Comment: Accepted contribution for the Springer Book "Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications" (proceedings of the BIRS CMM16 Workshop held in Banff, Canada, August 2016), 16 pages, 6 figure

    Assessment of ventricular function with first-pass radionuclide angiography using technetium 99m hexakis-2-methoxyisobutylisonitrile: a European multicentre study.

    Get PDF

    Physical parameters for Orion KL from modelling its ISO high resolution far-IR CO line spectrum

    Get PDF
    As part of the first high resolution far-IR spectral survey of the Orion KL region (Lerate et al. 2006), we observed 20 CO emission lines with Jup=16 to Jup=39 (upper levels from approx 752 K to 4294 K above the ground state). Observations were taken using the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO), in its high resolution Fabry-Perot (FP) mode (approx 33 km s−1^{-1}). We present here an analysis of the final calibrated CO data, performed with a more sophisticated modelling technique than hitherto, including a detailed analysis of the chemistry, and discuss similarities and differences with previous results. The inclusion of chemical modelling implies that atomic and molecular abundances are time-predicted by the chemistry. This provides one of the main differences with previous studies in which chemical abundances needed to be assumed as initial condition. The chemistry of the region is studied by simulating the conditions of the different known components of the KL region: chemical models for a hot core, a plateau and a ridge are coupled with an accelerated Lambda-iteration (ALI)radiative transfer model to predict line fluxes and profiles. We conclude that the CO transitions with 18<Jup<25 mainly arise from a hot core of diameter 0.02 pc and a density of 107^{7} cm−3^{-3} rather from the plateau as previous studies had indicated.Comment: The paper contains 10 pages, 7 figures and 4 tables. MNRAS accepte
    • …
    corecore