7 research outputs found
Preparation and structural stability of ordered nanocomposites: opal matrix - lead titanates
The conditions for the formation of nanocomposites based on the basis of lattice packings of SiO[2] nanospheres (opal matrices) with included crystallites of lead titanates (PbTiO[3] and PbTi[3]O[7]) in interspherical nanospacing are considered. For the formation of nanocomposites are used sample opal matrices with dimensions of single-domain regions >=0,1 mm.{3} The diameter of SiO[2] nanospheres was ~260 nm. Obtained nanocomposites volume >2 cm{3} in filling >20% of interspherical nanospacing PbTiO[3], PbTi[3]O[7] crystallites were size of 16-36 nm. Using X-ray diffraction and Raman spectroscopy are studied composition and structural stability when heated nanocomposites to 550Β°C, which allowed the identification of a local phase transition with change of the space group. The dependence of the composition of synthesized materials on the conditions of their preparation is submitted
The use of incorrectly posed inverse problems and catastrophe theory in acoustoplasmic studies
If the discharge current into a plasma contains direct and variable components, the plasma develops wavelike acoustic instabilities and eventually becomes an acoustoplasmΠ°. Such instabilities lead to bistability, multistability, and hysteresis phenomena of the current-voltage characteristics, causing abrupt changes in the state of the plasma medium. These changes can be imagined as phase transitions and described using catastrophe theory. In the present study, the experimental plasma data are approximated by the equations of catastrophes. After reducing the catastrophe equation to canonical form, the points of possible phase transitions are determined. The phase transition coordinates are then converted to coordinates in the experimental system by inverse trans-formations. In this way, we determine the points of possible phase transitions in a real experiment. Finally, the parameter changes in an acoustoplasma discharge are obtained by solving incorrectly posed inverse problems. The inverse problem of the experi-mental data is solved at each current time. Within the neighborhoods of singular points, the incorrectly posed inverse problems are solved by the theory of catastrophes. The proposed methods are applicable to various fields of science and technology.ΠΡΠ»ΠΈ ΡΠΎΠΊ ΡΠ°Π·ΡΡΠ΄Π° Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΡΡΠΌΡΠ΅ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΏΠ»Π°Π·ΠΌΠ° ΡΠ°Π·Π²ΠΈΠ²Π°Π΅Ρ Π²ΠΎΠ»Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ Π°ΠΊΡΡΡΠΈΡΠ΅ΡΠΊΡΡ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΈ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π°ΠΊΡΡΡΠΎΠΏΠ»Π°Π·ΠΌΠΎΠΉ. Π’Π°ΠΊΠΈΠ΅ Π½Π΅ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΡΠ²Π»Π΅Π½ΠΈΡΠΌ Π±ΠΈΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ, ΠΌΡΠ»ΡΡΠΈΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΈ Π³ΠΈΡΡΠ΅ΡΠ΅Π·ΠΈΡΠ° Π²ΠΎΠ»ΡΡ-Π°ΠΌΠΏΠ΅ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ, Π²ΡΠ·ΡΠ²Π°Ρ ΡΠ΅Π·ΠΊΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ. ΠΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΊΠ°ΠΊ ΡΠ°Π·ΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Ρ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠ»Π°Π·ΠΌΡ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ ΠΊΠ°ΡΠ°ΡΡΡΠΎΡ. ΠΠΎΡΠ»Π΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΊΠ°ΡΠ°ΡΡΡΠΎΡΡ ΠΊ ΠΊΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠΎΡΠΊΠ΅ ΡΠ°Π·ΠΎΠ²ΡΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΎΠ². ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π° ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΡΡΡΡ Π² ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ.Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΌΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΡΠΎΡΠΊΠΈ ΠΠ°ΠΊΠΎΠ½Π΅Ρ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π² Π°ΠΊΡΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΠ±ΡΠ°ΡΠ½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΡΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΠ΅ΠΊΡΡΠ΅ΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΡΡ
ΠΎΡΠΎΠ±ΡΡ
ΡΠΎΡΠ΅ΠΊ Π½Π΅Π²Π΅ΡΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ ΡΠ΅ΡΠ°ΡΡΡΡ ΡΠ΅ΠΎΡΠΈΠ΅ΠΉ ΠΊΠ°ΡΠ°ΡΡΡΠΎΡΡ. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡ ΠΊ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ ΠΎΠ±Π»Π°ΡΡΡΠΌ Π½Π°ΡΠΊΠΈ ΠΈ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ
Influence of temperature gradient on diffracted X-ray spectrum in quartz crystal
In this work characteristics of hard X-ray (with energy higher than 30 keV) were investigated. In the experiment we measured spectra of X-ray reflected by a quartz monocrystal in Laue geometry under influence of the temperature gradient. The measurements were made by the spectrometer BDER-KI-11K with 300 eV resolution on the 17.74 keV spectral line of Am241 and the spectrometer XR-100CR with 270 eV resolution on the same spectral line. An existence of temperature gradient leads to increasing of the diffracted beam intensity. The intensity was measured dependently on the temperature of one of the edge of the crystal