12 research outputs found

    48XXYY Syndrome in an Adult with Type 2 Diabetes Mellitus, Unilateral Renal Aplasia, and Pigmentary Retinitis

    Get PDF
    A 45-year-old male was referred for diabetes mellitus. Clinical examination found a family history of multiple precocious deaths, strong consanguinity, personal history of seizures during childhood, small testicles, small penis, sparse body hair, long arms and legs, dysmorphic features, mental retardation, dysarthria, tremor, and mild gait ataxia. Investigations found pigmentary retinitis, metabolic syndrome, unilateral renal aplasia, and hypergonadotropic hypogonadism, and ruled out mitochondrial cytopathy and leucodystrophy. Karyotype study showed a 48XXYY chromosomal type. Renal aplasia and pigmentary retinitis have not been described in 48XXYY patients. They may be related to the chromosomal sex aneuploidy, or caused by other genetic aberrations in light of the high consanguinity rate in the patient's family

    Do GSTM1 and GSTT1 polymorphisms influence the risk of developing mitochondrial diseases in a Tunisian population?

    No full text
    Mitochondria play an essential role to supply the cell with metabolic energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). As a consequence, they are also the primary source of cellular reactive oxygen species (ROS) which can cause oxidative damage of individual respiratory chain complexes. Indeed, affected OXPHOS subunits result in decreases in ATP production and increases in ROS formation which generate oxidative phosphorylation deficiency leading to mitochondrial dysfunctions. It has been suggested that ROS play a vital role in the pathogenesis of mitochondrial diseases. To the best of our knowledge, this is the first study which aimed to investigate the genetic variant effect of the antioxidant enzymes GSTM1 and GSTT1 on mitochondrial disease among a Tunisian population. In this report, 109 patients with mitochondrial disease and 154 healthy controls were genotyped by multiplex PCR amplification, and data were analyzed by SPSS v20 software. The results showed that GSTM1 null genotype was found to be associated with mitochondrial disease with a protective effect; however, no significant association of GSTT1 polymorphism with mitochondrial disease risk was revealed. But, interestingly, our findings highlight that GSTM1 active and GSTT1 null genotype combination increased by three fold the risk of developing mitochondrial disease with pc = 0.020, notably mitochondrial myopathy with pc = 0.046 and Leigh syndrome with pc = 0.042. In conclusion, this study suggests that GSTM1 active and GSTT1 null genotype combination might be a risk factor in developing mitochondrial disease

    Co segregation of the m.1555A>G mutation in the MT-RNR1 gene and mutations in MT-ATP6 gene in a family with dilated mitochondrial cardiomyopathy and hearing loss : A whole mitochondrial genome screening

    No full text
    Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to dysfunction of the mitochondrial respiratory chain, which is responsible for the generation of most cellular energy. Because cardiac muscles are one of the high energy demanding tissues, mitochondrial cardiomyopathies is one of the most frequent mitochondria disorders. Mitochondrial cardiomyopathy has been associated with several point mutations of mtDNA in both genes encoded mitochondrial proteins and mitochondrial tRNA and rRNA. We reported here the first description of mutations in MT-ATP6 gene in two patients with clinical features of dilated mitochondrial cardiomyopathy. The mutational analysis of the whole mitochondrial DNA revealed the presence of m.1555A>G mutation in MT-RNR1 gene associated to the m.8527A>G (p.M>V) and the m.8392C>T (p.136P>S) variations in the mitochondrial MT-ATP6 gene in patient1 and his family members with variable phenotype including hearing impairment. The second patient with isolated mitochondrial cardiomyopathy presented the m.8605C>T (p.27P>S) mutation in the MT-ATP6 gene. The three mutations p.M1V, p.P27S and p.P136S detected in MT-ATP6 affected well conserved residues of the mitochondrial protein ATPase 6. In addition, the substitution of proline residue at position 27 and 136 effect hydrophobicity and structure flexibility conformation of the protein
    corecore