180,286 research outputs found
Four-Dimensional String/String Duality
We present supersymmetric soliton solutions of the four-dimensional heterotic
string corresponding to monopoles, strings and domain walls. These solutions
admit the interpretation of a fivebrane wrapped around , or
of the toroidally compactified dimensions and are arguably exact to all
orders in . The solitonic string solution exhibits an {\it
strong/weak coupling} duality which however corresponds to an {\it
target space} duality of the fundamental string.Comment: 14 page
External quality assessment of urinary methylmalonic acid quantification - results of a pilot study
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work noncommercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http:// creativecommons.org/licenses/by-nc/3.0
Recommended from our members
Landscape context mediates the relationship between plant functional traits and decomposition
Aims: It has been well demonstrated that several interacting endogenous and exogenous factors influence decomposition. However, teasing apart the direct and indirect effects of these factors to predict decomposition patterns in heterogenous landscapes remains a key challenge. Methods: At 157 locations in a temperate forest, we measured decomposition of a standard substrate (filter paper) over two years, the landscape context in which decomposition took place, and the functional composition of the woody species that contributed leaf litter to the forest floor where litter bags were placed. We tested for direct and indirect effects of landscape context and direct effects of forest functional composition on decay using structural equation modelling. Results: We found that landscape context had direct effects on decay and indirect effects on decay via its influence on the functional composition of the surrounding forest. Forest functional composition also had direct effects on decay, but these effects decreased or disappeared completely over time. Moreover, community weighted mean trait values were better predictors of decay than functional dispersion of leaf traits, and leaf nitrogen content and carbon content were better predictors of decay than leaf dry matter content or leaf toughness. Conclusions: Our results highlight the importance of an integrative approach that examines the direct and indirect effects of multiple factors for understanding and predicting decomposition patterns across heterogenous landscapes
Warehouse commodity classification from fundamental principles. Part I: Commodity & burning rates
An experimental study was conducted to investigate the burning behavior of an individual Group A plastic commodity over time. The objective of the study was to evaluate the use of a nondimensional parameter to describe the time-varying burning rate of a fuel in complex geometries. The nondimensional approach chosen to characterize burning behavior over time involved comparison of chemical energy released during the combustion process with the energy required to vaporize the fuel, measured by a B-number. The mixed nature of the commodity and its package, involving polystyrene and corrugated cardboard, produced three distinct stages of combustion that were qualitatively repeatable. The results of four tests provided flame heights, mass-loss rates and heat fluxes that were used to develop a phenomenological description of the burning behavior of a plastic commodity. Three distinct stages of combustion were identified. Time-dependent and time-averaged B-numbers were evaluated from mass-loss rate data using assumptions including a correlation for turbulent convective heat transfer. The resultant modified B-numbers extracted from test data incorporated the burning behavior of constituent materials, and a variation in behavior was observed as materials participating in the combustion process varied. Variations between the four tests make quantitative values for each stage of burning useful only for comparison, as errors were high. Methods to extract the B-number with a higher degree of accuracy and future use of the results to improve commodity classification for better assessment of fire danger are discussed. © 2011 Elsevier Ltd. All rights reserved
Recommended from our members
Peptide-directed crystal growth modification in the formation of ZnO
Biomolecule-mediated synthesis is fascinating in terms of the level of control and the intricate hierarchical structures of the materials that can be produced. In this study we compare the behavior of a phage display identified peptide, EAHVMHKVAPRP (EM-12) with that of a mutant peptide EAHVCHKVAPRP (EC-12), having additional complexation capability, on the formation of ZnO from solution. The synthesis conditions (Zn(CH3COO)2–NH3 hydrothermal method at 50 °C) were chosen to generate rod-shaped ZnO via layered basic zinc salts (LBZs) as intermediates. Both peptides affected the crystal formation process by moderating the amount of Zn2+ ions in solution (EC12 having a greater effect than EM12) but only EC12 was shown to interact with the solid phase(s) formed during the reaction. Depending on the peptide concentration used, EM-12 was shown to delay and/or suppress ZnO formation. In contrast, additions of EC-12, although leading to the retention of higher levels of Zn2+ ions in solution did not similarly delay the transformation of the intermediate phases to ZnO but were found to dramatically modify the morphology of ZnO crystallites with mushroom shaped crystals being formed. From the results of detailed materials characterization and changes in the morphology observed, the interactions between the peptide(s) and solution and solid state species present during the process of ZnO crystal formation in the presence of EM-12 and EC-12 are proposed
Vaccination against Foot-and-mouth disease : do initial conditions affect its benefit?
When facing incursion of a major livestock infectious disease, the decision to implement a vaccination programme is made at the national level. To make this decision, governments must consider whether the benefits of vaccination are sufficient to outweigh potential additional costs, including further trade restrictions that may be imposed due to the implementation of vaccination. However, little consensus exists on the factors triggering its implementation on the field. This work explores the effect of several triggers in the implementation of a reactive vaccination-to-live policy when facing epidemics of foot-and-mouth disease. In particular, we tested whether changes in the location of the incursion and the delay of implementation would affect the epidemiological benefit of such a policy in the context of Scotland. To reach this goal, we used a spatial, premises-based model that has been extensively used to investigate the effectiveness of mitigation procedures in Great Britain. The results show that the decision to vaccinate, or not, is not straightforward and strongly depends on the underlying local structure of the population-at-risk. With regards to disease incursion preparedness, simply identifying areas of highest population density may not capture all complexities that may influence the spread of disease as well as the benefit of implementing vaccination. However, if a decision to vaccinate is made, we show that delaying its implementation in the field may markedly reduce its benefit. This work provides guidelines to support policy makers in their decision to implement, or not, a vaccination-to-live policy when facing epidemics of infectious livestock disease
Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link
Chronic nitrogen (N) fertilization can greatly affect soil carbon (C) sequestration by altering biochemical interactions between plant detritus and soil microbes. In lignin-rich forest soils, chronic N additions tend to increase soil C content partly by decreasing the activity of lignin-degrading enzymes. In cellulose-rich grassland soils it is not clear whether cellulose-degrading enzymes are also inhibited by N additions and what consequences this might have on changes in soil C content. Here we address whether chronic N fertilization has affected (1) the C content of light versus heavier soil fractions, and (2) the activity of four extracellular enzymes including the C-acquiring enzyme β-1,4-glucosidase (BG; necessary for cellulose hydrolysis). We found that 19 years of chronic N-only addition to permanent grassland have significantly increased soil C sequestration in heavy but not in light soil density fractions, and this C accrual was associated with a significant increase (and not decrease) of BG activity. Chronic N fertilization may increase BG activity because greater N availability reduces root C:N ratios thus increasing microbial demand for C, which is met by C inputs from enhanced root C pools in N-only fertilized soils. However, BG activity and total root mass strongly decreased in high pH soils under the application of lime (i.e. CaCO3), which reduced the ability of these organo-mineral soils to gain more C per units of N added. Our study is the first to show a potential ‘enzyme link’ between (1) long-term additions of inorganic N to grassland soils, and (2) the greater C content of organo-mineral soil fractions. Our new hypothesis is that the ‘enzyme link’ occurs because (a) BG activity is stimulated by increased microbial C demand relative to N under chronic fertilization, and (b) increased BG activity causes more C from roots and from microbial metabolites to accumulate and stabilize into organo-mineral C fractions. We suggest that any combination of management practices that can influence the BG ‘enzyme link’ will have far reaching implications for long-term C sequestration in grassland soils
Constraint-based sequence mining using constraint programming
The goal of constraint-based sequence mining is to find sequences of symbols
that are included in a large number of input sequences and that satisfy some
constraints specified by the user. Many constraints have been proposed in the
literature, but a general framework is still missing. We investigate the use of
constraint programming as general framework for this task. We first identify
four categories of constraints that are applicable to sequence mining. We then
propose two constraint programming formulations. The first formulation
introduces a new global constraint called exists-embedding. This formulation is
the most efficient but does not support one type of constraint. To support such
constraints, we develop a second formulation that is more general but incurs
more overhead. Both formulations can use the projected database technique used
in specialised algorithms. Experiments demonstrate the flexibility towards
constraint-based settings and compare the approach to existing methods.Comment: In Integration of AI and OR Techniques in Constraint Programming
(CPAIOR), 201
- …