3,859 research outputs found

    Viscoelastic evaluation of biological soft tissue in crush process at subsonic level for anti-bird strike technology of airplane

    Get PDF
    Miniaturization and lightening of airplane are advanced to improve its economic efficiency, and the safety technology of airplane design becomes difficult while the accident of bird-strike is increasing year by year. Then a system of shock impact test by using airsoft rifle is developed to evaluate the design technology of anti-bird strike structure of airplane. The viscoelastic characteristics of specimen is evaluated by analyzing stress response using the modified Hertz contact theory and the wave equation at the moment when simple ball bullet is shot to specimen by the airsoft rifle. In the results of experiment, the obvious relationship is observed subjectively between quasi-static and impact responses of specimen. The evaluated viscoelastic relationship is applied to simulate the impact test by using LSDYNA with fundamental viscoelastic constitutive equation and the material parameters derived from the impact test, and the well similar behavior has been simulated by the constitutive equation. By using the developed technology here, the phantom imitating real bird will be developed as standard specimen for an anti-bird strike test in future

    Topological Quantum Computing with p-Wave Superfluid Vortices

    Full text link
    It is shown that Majorana fermions trapped in three vortices in a p-wave superfluid form a qubit in a topological quantum computing (TQC). Several similar ideas have already been proposed: Ivanov [Phys. Rev. Lett. {\bf 86}, 268 (2001)] and Zhang {\it et al.} [Phys. Rev. Lett. {\bf 99}, 220502 (2007)] have proposed schemes in which a qubit is implemented with two and four Majorana fermions, respectively, where a qubit operation is performed by exchanging the positions of Majorana fermions. The set of gates thus obtained is a discrete subset of the relevant unitary group. We propose, in this paper, a new scheme, where three Majorana fermions form a qubit. We show that continuous 1-qubit gate operations are possible by exchanging the positions of Majorana fermions complemented with dynamical phase change. 2-qubit gates are realized through the use of the coupling between Majorana fermions of different qubits.Comment: 5 pages, 2 figures. Two-qubit gate implementation is added

    Topological Structure of a Vortex in Fulde-Ferrell-Larkin-Ovchinnikov State

    Full text link
    We find theoretically that the vortex core in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is quite different from the ordinary core by a simple topological reason. The intersection point of a vortex and nodal plane of the FFLO state empties the excess spins. This leads to observable consequences in the spatial structure of the spontaneous magnetization. We analyze this topological structure based on the low lying excitation spectrum by solving microscopic Bogoliubov-de Gennes equation to clarify its physical origin.Comment: 4 pages, 4 figure

    Vortex structures and zero energy states in the BCS-to-BEC evolution of p-wave resonant Fermi gases

    Full text link
    Multiply quantized vortices in the BCS-to-BEC evolution of p-wave resonant Fermi gases are investigated theoretically. The vortex structure and the low-energy quasiparticle states are discussed, based on the self-consistent calculations of the Bogoliubov-de Gennes and gap equations. We reveal the direct relation between the macroscopic structure of vortices, such as particle densities, and the low-lying quasiparticle state. In addition, the net angular momentum for multiply quantized vortices with a vorticity κ\kappa is found to be expressed by a simple equation, which reflects the chirality of the Cooper pairing. Hence, the observation of the particle density depletion and the measurement of the angular momentum will provide the information on the core-bound state and pp-wave superfluidity. Moreover, the details on the zero energy Majorana state are discussed in the vicinity of the BCS-to-BEC evolution. It is demonstrated numerically that the zero energy Majorana state appears in the weak coupling BCS limit only when the vortex winding number is odd. There exist the κ\kappa branches of the core bound states for a vortex state with vorticity κ\kappa, whereas only one of them can be the zero energy. This zero energy state vanishes at the BCS-BEC topological phase transition, because of interference between the core-bound and edge-bound states.Comment: 15 pages, 9 figures, published versio

    Spin textures in condensates with large dipole moments

    Get PDF
    We have solved numerically the ground states of a Bose-Einstein condensate in the presence of dipolar interparticle forces using a semiclassical approach. Our motivation is to model, in particular, the spontaneous spin textures emerging in quantum gases with large dipole moments, such as 52Cr or Dy condensates, or ultracold gases consisting of polar molecules. For a pancake-shaped harmonic (optical) potential, we present the ground state phase diagram spanned by the strength of the nonlinear coupling and dipolar interactions. In an elongated harmonic potential, we observe a novel helical spin texture. The textures calculated according to the semiclassical model in the absence of external polarizing fields are predominantly analogous to previously reported results for a ferromagnetic F = 1 spinor Bose-Einstein condensate, suggesting that the spin textures arising from the dipolar forces are largely independent of the value of the quantum number F or the origin of the dipolar interactions.Comment: 9 pages, 6 figure

    Generic Phase Diagram of Fermion Superfluids with Population Imbalance

    Get PDF
    It is shown by microscopic calculations for trapped imbalanced Fermi superfluids that the gap function has always sign changes, i.e., the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state like, up to a critical imbalance PcP_c, beyond which normal state becomes stable, at temperature T=0. A phase diagram is constructed in TT vs PP, where the BCS state without sign change is stable only at T≠0T\neq 0. We reproduce the observed bimodality in the density profile to identify its origin and evaluate PcP_c as functions of TT and the coupling strength. These dependencies match with the recent experiments.Comment: 5 pages, 5 figures, replaced by the version to appear in PR

    Direct Imaging of Spatially Modulated Superfluid Phases in Atomic Fermion Systems

    Full text link
    It is proposed that the spatially modulated superfluid phase, or the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state could be observed in resonant Fermion atomic condensates which are realized recently. We examine optimal experimental setups to achieve it by solving Bogoliubov-de Gennes equation both for idealized one-dimensional and realistic three-dimensional cases. The spontaneous modulation of this superfluid is shown to be directly imaged as the density profiles either by optical absorption or by Stern-Gerlach experiments.Comment: 4 pages, 3 figure
    • …
    corecore