8 research outputs found

    Human Papillomavirus Types 52 and 58 Are Prevalent in Uterine Cervical Squamous Lesions from Japanese Women

    Get PDF
    Objective. To estimate the prevalence and genotypes of high-risk human papillomavirus (HPV) focusing HPV 16, 18, 52, and 58 in Japan. Methods. Liquid-base cytology specimens were collected from Japanese women (n = 11022), aged 14–98. After classifying cytodiagnosis, specimens were analyzed for HPV DNA by the multiplex polymerase chain reaction method, where 1195 specimens were positive for cervical smear, except adenomatous lesions. Result. HPV genotypes were detected in 9.5% of NILM and 72.2% of ASC-US or more cervical lesions. In positive cervical smears, HPV genotypes were HPV 52 at 26.6%, HPV 16 at 25.2%, HPV 58 at 21.8%, and HPV 18 at 7.1%. Most patients infected with HPV 16 were between 20–29 years old, decreasing with age thereafter. As for HPV 52 and 58, although the detection rate was high in 30- to 39-year-olds, it also was significant in the 50s and 60s age groups. Conclusion. In Japan, as a cause of abnormal cervical cytology, HPV52 and 58 are detected frequently in addition to HPV 16. In older age groups, HPV 52 and 58 detection rates were higher than that observed for HPV 16. After widespread current HPV vaccination, we still must be aware of HPV 52 and 58 infections

    Obesity-induced PARIS (ZNF746) accumulation in adipose progenitor cells leads to attenuated mitochondrial biogenesis and impaired adipogenesis

    No full text
    Abstract White adipose tissue (WAT) is critical for whole-body energy metabolism, and its dysfunction leads to various metabolic disorders. In recent years, many studies have suggested that impaired mitochondria may contribute to obesity-related decline in adipose tissue function, but the detailed mechanisms remain unclear. To investigate these mechanisms, we carried out a comprehensive analysis of WAT from mice with diet-induced obesity. We discovered the transcription factor Parkin interactive substrate (PARIS or ZNF746), which suppresses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis, to be accumulated in adipose progenitor cells from obese mice. Furthermore, we demonstrated that 3T3-L1 preadipocytes with overexpression of PARIS protein exhibited decreased mitochondrial biogenesis and impaired adipogenesis. Our results suggest that the accumulation of PARIS protein may be a novel component in the pathogenesis of obesity-related dysfunction in WAT
    corecore