61 research outputs found

    Early Science Result from the Japanese Virtual Observatory: AGN and Galaxy Clustering at z = 0.3 to 3.0

    Full text link
    We present the result of projected cross correlation analysis of AGNs and galaxies at redshifts from 0.3 to 3.0. The Japanese Virtual Observatory (JVO) was used to obtain the Subaru Suprime-Cam images and UKIDSS catalog data around AGNs. We investigated 1,809 AGNs, which is about ten times larger a sample than that used in previous studies on AGN-galaxy clustering at redshifts larger than 0.6. 90% of the AGN samples are optically-selected AGN from the SDSS and 2dF catalogs. The galaxy samples at low redshift includes many redder objects from UKIDSS survey, while at higher redshift they are mainly blue galaxies from Suprime-Cam. We found significant excess of galaxies around the AGNs at redshifts from 0.3 to 1.8. For the low redshift samples (z<0.9z<0.9), we obtained correlation length of r0=r_{0} = 5--6 h1h^{-1}Mpc (γ=1.8\gamma = 1.8), which indicates that the AGNs at this redshift range reside in a similar environment around typical local galaxies. We also found that AGNs at higher redshift ranges reside in a denser environment than lower redshift AGNs; For z=1.31.8z=1.3 \sim 1.8 AGNs, the cross correlation length was measured as 113+6^{+6}_{-3} h1h^{-1}Mpc (γ=1.8\gamma=1.8). Considering that our galaxies sample is based on optical observations with Suprime-Cam at the redshift range, it is expected that blue star-forming galaxies comprise the majority of objects that are observed to be clustered around the AGNs. It is successfully demonstrated that the use of the archive through the Virtual Observatory system can provide a powerful tool for investigating the small scale environment of the intermediate redshift AGNs.Comment: accepted to PASJ, 36 pages, 21 figures, this is an accepted versio

    Superwind-Driven Intense H_2 Emission in NGC 6240

    Get PDF
    We have performed a long-slit K band spectroscopic observation of the luminous infrared galaxy NGC 6240. The peak position of the H_2 v=1-0 S(1) emission in the slit is located ~0.3" - 0.4" north of the southern nucleus. It is almost the midpoint between the southern nucleus and the peak position of the ^12CO J=1-0 emission. Based on the line-ratio analyses, we suggest the excitation mechanism of H_2 is pure thermal at most positions. In the southern region we find the following three velocity components in the H_2 emission: the blueshifted shell component (~-250 km s^-1 with respect to V_sys) which is recognized as a distinct C-shape distortion in the velocity field around the southern nucleus, the high-velocity blueshifted ``wing'' component (~-1000 km s^-1 with respect to V_sys), and the component indicating possible line splitting of ~500 km s^-1. The latter two components are extended to the south from the southern nucleus. We show that the kinematic properties of these three components can be reproduced by expanding motion of a shell-like structure around the southern nucleus. The offset peak position of the H_2 emission can be understood if we assume that the shell expanding to the north interacts with the extragalactic molecular gas. At the interface between the shell and the molecular gas concentration the cloud-crushing mechanism proposed by Cowie et al. (1981) may work efficiently, and the intense H_2 emission is thus expected there. All these findings lead us to propose a model that the most H_2 emission is attributed to the shock excitation driven by the superwind activity of the southern nucleus.Comment: 33 pages, 9 figures, accepted for publication in PAS
    corecore