59 research outputs found

    Une classification des hypothèses calculatoire dans le modèle du groupe algébrique

    Get PDF
    International audiencea We give a taxonomy of computational assumptions in the algebraic group model (AGM). We first analyze Boyen's Uber assumption family for bilinear groups and then extend it in several ways to cover assumptions as diverse as Gap Diffie-Hellman and LRSW. We show that in the AGM every member of these families is implied by the q-discrete logarithm (DL) assumption, for some q that depends on the degrees of the polynomials defining the Uber assumption. Using the meta-reduction technique, we then separate (q + 1)-DL from q-DL, which yields a classification of all members of the extended Uber-assumption families. We finally show that there are strong assumptions, such as one-more DL, that provably fall outside our classification, by proving that they cannot be reduced from q-DL even in the AGM

    Mutations in Protein-Binding Hot-Spots on the Hub Protein Smad3 Differentially Affect Its Protein Interactions and Smad3-Regulated Gene Expression

    Get PDF
    Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses.We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression.Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses

    Accumulators in (and Beyond) Generic Groups: Non-Trivial Batch Verification Requires Interaction

    Get PDF
    We prove a tight lower bound on the number of group operations required for batch verification by any generic-group accumulator that stores a less-than-trivial amount of information. Specifically, we show that Ω(t(λ/logλ))\Omega(t \cdot (\lambda / \log \lambda)) group operations are required for the batch verification of any subset of t1t \geq 1 elements, where λN\lambda \in \mathbb{N} is the security parameter, thus ruling out non-trivial batch verification in the standard non-interactive manner. Our lower bound applies already to the most basic form of accumulators (i.e., static accumulators that support membership proofs), and holds both for known-order (and even multilinear) groups and for unknown-order groups, where it matches the asymptotic performance of the known bilinear and RSA accumulators, respectively. In addition, it complements the techniques underlying the generic-group accumulators of Boneh, B{ü}nz and Fisch (CRYPTO \u2719) and Thakur (ePrint \u2719) by justifying their application of the Fiat-Shamir heuristic for transforming their interactive batch-verification protocols into non-interactive procedures. Moreover, motivated by a fundamental challenge introduced by Aggarwal and Maurer (EUROCRYPT \u2709), we propose an extension of the generic-group model that enables us to capture a bounded amount of arbitrary non-generic information (e.g., least-significant bits or Jacobi symbols that are hard to compute generically but are easy to compute non-generically). We prove our lower bound within this extended model, which may be of independent interest for strengthening the implications of impossibility results in idealized models

    A BASIC STUDY ON THE REPAIR WORK PLAN FOR PUBLIC BUILDINGS AS THE TOOL OF ITS MAINTENANCE METHOD

    No full text

    Current Status of Needles in the Optimization of Endoscopic Ultrasound-Guided Procedures

    No full text
    Endoscopic ultrasound (EUS) is among the most important tools for the evaluation of gastrointestinal tumors and affected areas around the gastrointestinal tract. It enables the acquisition of material from abnormal lesions via the gastrointestinal wall for tissue confirmation via endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA). EUS-FNA has played a vital role in oncological care and has become the standard method for tissue sampling. The choice of needle type is an important factor determining tissue acquisition and has been evaluated by many researchers. New needles are introduced into the market almost every year, and opinions vary regarding proper needle selection. While there are diverse opinions but no definitive recommendations about the use of one particular device, fine-needle biopsy needles may provide detailed information on a tissue’s architecture based on greater sample yields. This permits additional analyses, including genetic sequencing and phenotyping, thereby enabling the provision of more personalized treatment plans. Furthermore, other EUS-guided procedures have been developed, including interventional EUS and through-the-needle devices. Given the continued attempts to improve the diagnostic ability and therapeutic techniques, we review in detail the available types of puncture needles to provide guidance on the selection of the appropriate needle types
    corecore