104 research outputs found
MHD Equilibrium and Stability of Spherical Tokamak Plasma with Current Hole
The potential characteristics of spherical tokamak configurations with current hole are investigated from the point of view of magnetohydrodynamic (MHD) equilibrium and stability. The effect of the toroidal shear flows is also considered by using a modified Grad-Shafranov equation. Linear and nonlinear stability for low-n kink modes and intermediate-n ballooning mode is analyzed by means of numerical simulations
Dynamics of spherical tokamak plasma on the internal reconnection event
Nonlinear magnetohydrodynamic (MHD) simulations are executed to investigate the dynamical behavior of the relaxation phenomenon observed in spherical tokamak (ST) plasma that is known as the Internal Reconnection Event (IRE). The simulation results successfully reproduce several key features of IRE, and the physical mechanisms are revealed. A sudden collapse of the pressure profile takes place as a result of a nonlinear time development of a pressure-driven instability. A magnetic reconnection induced between the internal and the external magnetic field is found to play a crucial role in determining the nature of the overall process, namely, the rapid expulsion of the plasma heat energy due to the pressure imbalance along the reconnected field lines, and the large distortion in the overall shape. The resultant deformations in overall shape of the plasma are in good agreement with the experimental observations
Capillary Electrophoretic Characterization of Carbon Nanodots Prepared from Glutamic Acid in an Electric Furnace
Carbon nanodots (CNDs) prepared from glutamic acid or glutathione in an electric furnace were characterized by capillary electrophoresis. Two major peaks were detected in the electropherograms by capillary zone electrophoresis, corresponding to anionic and less-charged CNDs. The effective electrophoretic mobility of the anionic CND formed from glutamic acid was almost identical over neutral to weakly alkaline pH range, and the CND would not contain significant amount of amino group. On the other hand, the effective electrophoretic mobility tended to decrease with decreasing pH at weakly acidic pH conditions, suggesting the functional groups of carboxylate moiety on the anionic CNDs. Dodecyl sulfate ion was added in the separation buffer to give anionic charge to the less-charged CND by adsorption. However, the anionic charge induced was little, and the dodecyl sulfate ion was not likely adsorbed on the less-charged CND and the CND would be hydrophilic
Capillary Electrophoretic Characterization of Platinum and Silver Nanoparticles in Aqueous Solution Prepared by a Solution Plasma Process
Aqueous solutions of platinum nanoparticles (PtNP) and silver nanoparticles (AgNP) were prepared by a solution plasma process in the presence of hydrogen peroxide. Both nanoparticle solutions did not show visible-range photo-absorption by surface plasmon resonance, and capillary zone electrophoresis (CZE) was utilized for the characterization of the nanoparticles. An anionic broad peak was detected with the PtNP by the CZE analysis, whereas both an anionic and an electrically neutral peaks were detected with the AgNP. Serious shot signals attributed to the agglomerate of the nanoparticles were not detected with either the PtNP or the AgNP, and the nanoparticles were stably dispersed in an aqueous solution for at least a few tens of week. Dispersion stability of the nanoparticles was also evaluated in salt solutions, as well as with ethanol co-solvent
Simulation Data Analysis by Virtual Reality System
We introduce new software for analysis of time-varying simulation data and new approach for contribution of simulation to experiment by virtual reality (VR) technology. In the new software, the objects of time-varying field are visualized in VR space and the particle trajectories in the time-varying electromagnetic field are also traced. In the new approach, both simulation results and experimental device data are simultaneously visualized in VR space. These developments enhance the study of the phenomena in plasma physics and fusion plasmas
Generation of Tetrafluoroethylene–Propylene Elastomer-Based Microfluidic Devices for Drug Toxicity and Metabolism Studies
フッ素系エラストマー素材を用いた肝臓チップの開発と薬物代謝・毒性試験への応用. 京都大学プレスリリース. 2021-09-16.Drug testing on miniatured livers. 京都大学プレスリリース. 2021-09-17.Polydimethylsiloxane (PDMS) is widely used to fabricate microfluidic organs-on-chips. Using these devices (PDMS-based devices), the mechanical microenvironment of living tissues, such as pulmonary respiration and intestinal peristalsis, can be reproduced in vitro. However, the use of PDMS-based devices in drug discovery research is limited because of their extensive absorption of drugs. In this study, we investigated the feasibility of the tetrafluoroethylene–propylene (FEPM) elastomer to fabricate a hepatocyte-on-a-chip (FEPM-based hepatocyte chip) with lower drug absorption. The FEPM-based hepatocyte chip expressed drug-metabolizing enzymes, drug-conjugating enzymes, and drug transporters. Also, it could produce human albumin. Although the metabolites of midazolam and bufuralol were hardly detected in the PDMS-based hepatocyte chip, they were detected abundantly in the FEPM-based hepatocyte chip. Finally, coumarin-induced hepatocyte cytotoxicity was less severe in the PDMS-based hepatocyte chip than in the FEPM-based hepatocyte chip, reflecting the different drug absorptions of the two chips. In conclusion, the FEPM-based hepatocyte chip could be a useful tool in drug discovery research, including drug metabolism and toxicity studies
マイクロ波CTマンモグラフィの開発
24個の固定ダイポールアンテナを用いて三次元マイクロ波CT実験を行い,スーパーコンピュータを用いてForward-Backward Time Stepping(FBTS)法によるCT計算を行った.その結果得られた知見は,FBTS法が雑音に強いこと,及び計算の初期設定やキャリブレーション設定が精度向上に重要なことである.また計算モデル化が容易な広帯域平面アンテナの開発も行った.これらの知見を生かし,FBTS法マイクロ波CTマンモグラフィ装置の概念設計を行った
Suplatast tosilate alleviates nasal symptoms through the suppression of nuclear factor of activated T-cells-mediated IL-9 gene expression in toluene-2,4-diisocyanate-sensitized rats
Histamine H1 receptor (H1R) gene is upregulated in patients with pollinosis; its expression level is highly correlated with the nasal symptom severity. Antihistamines are widely used as allergy treatments because they inhibit histamine signaling by blocking H1R or suppressing H1R signaling as inverse agonists. However, long-term treatment with antihistamines does not completely resolve toluene-2,4-diisocyanate (TDI)-induced nasal symptoms, although it can decrease H1R gene expression to the basal level, suggesting additional signaling is responsible for the pathogenesis of the allergic symptoms. Here, we show that treatment with suplatast tosilate in combination with antihistamines markedly alleviates nasal symptoms in TDI-sensitized rats. Suplatast suppressed TDI-induced upregulation of IL-9 gene expression. Suplatast also suppressed ionomycin/phorbol-12-myristate-13-acetate-induced upregulation of IL-2 gene expression in Jurkat cells, in which calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling is known to be involved. Immunoblot analysis demonstrated that suplatast inhibited binding of NFAT to DNA. Furthermore, suplatast suppressed ionomycin-induced IL-9 mRNA upregulation in RBL-2H3 cells, in which CN/NFAT signaling is also involved. These data suggest that suplatast suppressed NFAT-mediated IL-9 gene expression in TDI-sensitized rats and this might be the underlying mechanism of the therapeutic effects of combined therapy of suplatast with antihistamine
- …