28 research outputs found

    'MOHAWK': A 4000-fiber positioner for DESpec

    Get PDF
    We present a concept for a 4000-fibre positioner for DESpec, based on the Echidna 'tilting spine' technology. The DESpec focal plane is 450mm across and curved, and the required pitch is ∼6.75mm. The size, number of fibers and curvature are all compara

    SAMI - A new multi-object IFS for the Anglo-Australian telescope

    Get PDF
    SAMI (Sydney-AAO Multi-object Integral field spectrograph) has the potential to revolutionise our understanding of galaxies, with spatially-resolved spectroscopy of large numbers of targets. It is the first on-sky application of innovative photonic imaging bundles called hexabundles, which will remove the aperture effects that have biased previous single-fibre multi-object astronomical surveys. The hexabundles have lightly-fused circular multi-mode cores with a covering fraction of ∼ 73%. The thirteen hexabundles in SAMI, each have 61 fibre cores, and feed into the AAOmega spectrograph at the Anglo-Australian Telescope (AAT). SAMI was installed at the AAT in July 2011 and the first commissioning results prove the effectiveness of hexabundles on sky. A galaxy survey of several thousand galaxies to z ∼ 0.1 will begin with SAMI in mid-2012

    GNOSIS: the first instrument to use fibre Bragg gratings for OH suppression

    Full text link
    GNOSIS is a prototype astrophotonic instrument that utilizes OH suppression fibres consisting of fibre Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47-1.7 microns. GNOSIS was commissioned at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibres, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput and excellent suppression of the skylines by the OH suppression fibres, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS and IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise-dominated. OH suppression fibres could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibres paired with a fibre-fed spectrograph will at least provide a real benefits at low resolving powers.Comment: 15 pages, 13 figures, accepted to A

    GNOSIS: The first instrument to use fiber bragg gratings for OH suppression

    Get PDF
    The near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to makeThe GNOSIS team acknowledges funding by ARC LIEF grant LE100100164. C.Q.T. gratefully acknowledges support by the National Science Foundation Graduate Research Fellowship under grant No. DGE-1035963

    6dF: A very efficient multi-object spectroscopy system for the UK Schmidt Telescope

    No full text
    Multi-object spectroscopy at the Anglo-Australian Observatory's 1.2-m UK Schmidt Telescope (UKST) is carried out with the FLAIR multi-fibre system. The FLAIR front-end feeds an optically-efficient, all-Schmidt spectrograph mounted on the dome floor. However, positioning of the 92 available fibres within the 40 sq.deg. field of the telescope is essentially a manual operation, and can take from four to six hours. Typical observations of sufficient signal-to-noise usually take much less than this (e.g. about an hour for galaxy redshifts to B ∼ 17). Clearly, therefore, the system is working at well under its potential efficiency for survey-type observations where repeated reconfigurations of fibres are required. To address the imbalance between reconfiguration time and observing time, a fully-automated, off telescope, pick-place fibre-postioning system known as 6dF has been proposed. It will allow 150 fibres to be reconfigured across a 6-degree circular field in under an hour. Three field plates will be available with a 10-15 minute field-plate changeover anticipated. The resulting factor of 10 improvement in observing efficiency will deliver, for the first time, an effective means of tackling major, full-hemisphere, spectroscopic surveys. An all southern sky near-infrared-selected galaxy redshift survey is one high-priority example. The estimated cost of 6dF is $A450k. A design study has been completed and substantial funding is already in place to build the instrument over a two-year timescale.link_to_subscribed_fulltex
    corecore