6 research outputs found

    Kenaf fibrous concrete: mechanical properties with different fiber volume fraction

    Get PDF
    Kenaf fiber comes from Kenaf plant which grows thrivingly in hot and humid temperature. The origin of Kenaf comes from a few different countries that have similar characteristics such as Africa, China, and India. Kenaf or its scientific name, hibiscus cannabinus is a beneficial crop where the seeds and stems can be used in various industries such as medicine, paper production and composite material. Kenaf core and bast fiber can reach up to 3 meters long and this is an essential reason to corporate Kenaf with other composite material like polymer and concrete. This paper indicates the investigation of finding an optimum value of Kenaf Fibrous Concrete with fiber volume of 0%, 0.5%, 0.75%, 1% and 1.5% in the mix proportions. The mechanical properties of fresh and hardened samples were tested during 7th and 28th day of curing in water. Compressive strength, splitting tensile and flexural strength tests were executed in accordance of BSEN 12390-3:2009, ASTM C496M-06 and BSEN 12390-5:2009 respectively, with different volume fractions in finding an optimum value of Kenaf Fibrous Concrete. The result shows that kenaf fiber has the hydrophilic characteristic that influences more water absorption in the mix proportions. The capability of this fiber improves the tensile strength and ductility because of the inclusion of fiber. However, it decreases the concrete compressive strength

    A Review of Heat Transfer in Terraced Houses of Tropical Climate

    No full text
    Heat is the process of energy circulation and replacement of air from hot to cold. In tropical climates, more heat is received because of the location of Malaysia of the equatorial line. Excessive heat in buildings causes discomfort to the occupants in tropical climate. Tropical rainforest climate receives higher solar radiation and terrestrial radiation reaching the building envelopes contributes to this problem. The design of the building should be more concern on reducing this heat. This paper provides a review of heat contribution in a terraced house indoor environment for tropical climate. A good comfortable home is part of the sustainable development agenda to improve the quality of life. Terraced houses are the most living quarters in mass living scheme for urban areas. The incoming solar energy from the sun into the building surface cannot be changed, therefore a consideration of passive building design need to be applied in terraced house design. Data collection gathered from this literature survey will assist to identify problems of discomfort occupant. This strategy would assist in improving the building industry in promoting sustainable development in Malaysia

    Compressive properties of kenaf/vinylester composite with different fiber volume content

    No full text
    This research is about compressive strength of reinforced kenaf fibres with vinylester resin composites by using hand lay-up process to assess its utilisation as a new material in engineering applications. The kenaf fibre reinforced polymer composite has various applications such as automotive, electrical, sporting goods, construction, marine, and household appliances. Kenaf composites possess an edge over synthetic composite due to its biodegradable, non-abrasive, low cost and low density feature. However, despite its applaudable merits, its poor resistance to moisture is one of the disadvantages. Hence, fibre surface treatment was used in resolving this natural fibre problem. In this study, kenaf fibres was treated with 5% NaOH for 3 hours by immersion in order to overcome its moisture absorption disadvantage. The compressive strength and modulus of kenaf fibre vinylester composite with 10%, 30% and 40% volume fraction of fibre were determined. Results indicated that, the compressive strength and modulus of Kenaf Fibre Reinforced Vinylester Polymer composite (KFRVP) was increased as the fibre volume fraction was increased. The result also showed that the compressive strength of Kenaf Fibre Reinforced Vinylester Polymer composite with 40% volume fraction (KFRVP-40%) was 146% and 31% higher than that of KFRVP-10% and KFRVP-30%, respectively

    Mechanical properties of kenaf fibrous pulverized fuel ash concrete

    No full text
    The main objective of the experimental work is to identify the mechanical properties of Kenaf Fiber incorporate with Ordinary Portland Cement (OPC) and Pulverised Fuel Ash (PFA) in the mix proportions of concrete. Kenaf Fibrous Concrete (KFC) and Kenaf Fibrous Pulverised Fuel Ash Concrete (KFPC) will be measured on physical and mechanical properties in order to investigate the suitability of this natural fiber as a composite material. A comparison of properties between these two composites will determine the density, workability, compressive, tensile, and flexural strength of the concrete. Eight different mixes with varying percentage of Kenaf fiber were prepared with 30N/mm2 strength at 28days ,56 days and 90 days. Short fiber with 25mm and 50mm length were randomly distribute in composite to enhance the tensile and durability. PFA was obtained by the process of burning in the Power Station Coal Ash at Tanjung Bin, Johor. The unburning powder from the process is called as a PFA generally suitable for cement replacement in the concrete mix. The pozzolanic reaction will improve the adhesion of cement gel, hence increased the properties of concrete in a long-term strength development. The result shows that the inclusion of Kenaf fiber improve tensile strength of composite, furthermore the 25% PFA mix increase the durability of concrete

    Mechanical properties of kenaf fibrous pulverized fuel ash concrete

    No full text
    The main objective of the experimental work is to identify the mechanical properties of Kenaf Fiber incorporate with Ordinary Portland Cement (OPC) and Pulverised Fuel Ash (PFA) in the mix proportions of concrete. Kenaf Fibrous Concrete (KFC) and Kenaf Fibrous Pulverised Fuel Ash Concrete (KFPC) will be measured on physical and mechanical properties in order to investigate the suitability of this natural fiber as a composite material. A comparison of properties between these two composites will determine the density, workability, compressive, tensile, and flexural strength of the concrete. Eight different mixes with varying percentage of Kenaf fiber were prepared with 30N/mm2 strength at 28days ,56 days and 90 days. Short fiber with 25mm and 50mm length were randomly distribute in composite to enhance the tensile and durability. PFA was obtained by the process of burning in the Power Station Coal Ash at Tanjung Bin, Johor. The unburning powder from the process is called as a PFA generally suitable for cement replacement in the concrete mix. The pozzolanic reaction will improve the adhesion of cement gel, hence increased the properties of concrete in a long-term strength development. The result shows that the inclusion of Kenaf fiber improve tensile strength of composite, furthermore the 25% PFA mix increase the durability of concrete
    corecore