5 research outputs found

    High Precision Mass Measurements of Intermediate-mass Neutron-deficient Nuclei via MRTOF-MS

    No full text
    International audiencePrecision mass measurements of ^63Cu, ^64–66Zn, ^65–67Ga, ^65–67Ge, ^67As, ^79,81Br, ^79Kr, ^80,81Rb, and ^79,80Sr were performed with a multireflection time-of-flight mass spectrograph. The masses of these nuclides were determined by the single reference method using isobaric references. In order to obtain precise results, time-of-flight drift compensations were performed and a phenomenological fit function was employed. Consequently, in the case of ^65Ga, a mass uncertainty of 2.1 keV, corresponding to a relative precision of δm/m=3.5×108\delta m/m = 3.5 \times 10^{ - 8}, was obtained and the mass value is in excellent agreement with the 2016 Atomic Mass Evaluation

    Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder

    No full text
    Recent studies have established important roles of de novo mutations (DNMs) in autism spectrum disorders (ASDs). Here, we analyze DNMs in 262 ASD probands of Japanese origin and confirm the “de novo paradigm” of ASDs across ethnicities. Based on this consistency, we combine the lists of damaging DNMs in our and published ASD cohorts (total number of trios, 4,244) and perform integrative bioinformatics analyses. Besides replicating the findings of previous studies, our analyses highlight ATP-binding genes and fetal cerebellar/striatal circuits. Analysis of individual genes identified 61 genes enriched for damaging DNMs, including ten genes for which our dataset now contributes to statistical significance. Screening of compounds altering the expression of genes hit by damaging DNMs reveals a global downregulating effect of valproic acid, a known risk factor for ASDs, whereas cardiac glycosides upregulate these genes. Collectively, our integrative approach provides deeper biological and potential medical insights into ASDs
    corecore