90 research outputs found

    Discovery of a New Supernova Remnant in the Direction of G69.7+1.0

    Get PDF
    We discovered a middle-aged supernova remnant (SNR) in the vicinity of G69.7+1.0 using the ASCA satellite. G69.7+1.0 was identified in the 2.7 GHz survey and classified as a shell-type SNR with a diameter of 16 arcmin. During the ROSAT all-sky survey, the X-ray emission was detected in the direction of G69.7+1.0. However, it extends beyond the radio shell, and an X-ray bright region was located outside of the radio shell. A spectral study with the ASCA and ROSAT shows a thin thermal plasma with an electron temperature of ~0.4 keV. There is no significant variation of the spectral parameters over the field of view, except for the lower column density of the eastern part. We also found a large shell structure which surrounds the X-ray bright region in both optical and radio images. We suggest that the observed X-ray emission is associated with the large optical and radio shell, and that they are part of a new SNR, different from the radio SNR G69.7+1.0, which we have named AX J2001+3235 or G69.4+1.2. The large shell and the electron temperature of ~0.4 keV indicate that AX J2001+3235 is an evolved SNR. From a comparison with the column density of CTB 80 (G69.0+2.7), we estimate that the distance of the SNR is about 2.5 kpc.Comment: Accepted for publication in PASJ, 9 pages, 5 figure

    Evidence for Resonance Line Scattering in the Suzaku X-ray Spectrum of the Cygnus Loop

    Full text link
    We present an analysis of the Suzaku observation of the northeastern rim of the Cygnus Loop supernova remnant. The high detection efficiency together with the high spectral resolution of the Suzaku X-ray CCD camera enables us to detect highly-ionized C and N emission lines from the Cygnus Loop. Given the significant plasma structure within the Suzaku field of view, we selected the softest region based on ROSAT observations. The Suzaku spectral data are well characterized by a two-component non-equilibrium ionization model with different best-fit values for both the electron temperature and ionization timescale. Abundances of C to Fe are all depleted to typically 0.23 times solar with the exception of O. The abundance of O is relatively depleted by an additional factor of two compared with other heavy elements. We found that the resonance-line-scattering optical depth for the intense resonance lines of O is significant and, whereas the optical depth for other resonance lines is not as significant, it still needs to be taken into account for accurate abundance determination.Comment: 10 pages, 5 figures. accepted for Publications of the Astronomical Society of Japa

    Overabundance of Calcium in the young SNR RX J0852−-4622: evidence of over-production of 44^{44}Ti

    Get PDF
    Recently, COMPTEL has detected Îł\gamma-rays of 1157 keV from 44^{44}Ti in the direction of the SNR RX J0852−-4622 (Iyudin et al. 1998). Since 44^{44}Ti is a product of explosive nucleosynthesis and its half lifetime \tau\sb{1/2} is about 60 yrs, RX J0852−-4622 must be a young supernova remnant and radiation is dominated by the ejecta rather than by interstellar matter. We have detected an X-ray emission line at 4.1±0.24.1\pm 0.2 keV which is thought to come from highly ionized Ca. The emission line is so far only seen in the north-west shell region of RX J0852−-4622. The X-ray spectrum can be well fitted with that of thin hot plasma of cosmic abundances except that of Ca, which is overabundant by a factor of 8±58 \pm 5. Assuming that most of Ca is 44^{44}Ca, which originates from 44^{44}Ti by radioactive decay, we estimate a total Ca mass of about 1.1×10−3M⊙1.1\times 10^{-3}M_\odot. Combining the amount of 44^{44}Ca and the observed flux of the 44^{44}Ti Îł\gamma-ray line, the age of RX J0852−-4622 is around 1000 yrs.Comment: 14 pages, 5figures, accepted for publication of PAS

    Metal Rich Plasma at the Center Portion of the Cygnus Loop

    Get PDF
    We observed the center portion of the Cygnus Loop supernova remnant with the ASCA observatory. The X-ray spectrum of the center portion was significantly different from that obtained at the North-East (NE) limb. The emission lines from Si and S were quite strong while those of O and the continuum emission were similar to those obtained at the NE limb. Based on the spectral analysis, Si and S emission lines originated from a high-kTe and low ionization plasma whereas O and most of the continuum emission arose from a low-kTe and high ionization plasma. We suppose that Si and S emitting gas are present at the interior of the Loop while O lines and continuum emission mainly arise from the shell region. Therefore, we subtracted the spectrum of the NE limb from that of the center. Obtained abundances of Si, S, and Fe were 4 ±\pm 1, 6 ±\pm 2, and 1.3−0.3+0.6{1.3}^{+0.6}_{-0.3} times higher than those of the cosmic abundances, respectively, and are ∌\sim40 times richer than those obtained at the NE limb. These facts strongly support that some of the crude ejecta must be left at the center portion of the Cygnus Loop. The low abundance of Fe relative to Si and S suggests a type II SN with a massive progenitor star as the origin of the Cygnus Loop.Comment: Accepted for Publications of the Astronomical Society of Japan, 40 pages, 12 Postscript figures, uses PASJ95.sty, PASJadd.sty, and psbox.st

    On the Nature of AX J2049.6+2939 and AX J2050.0+2914

    Full text link
    AX J2049.6+2939 is a compact X-ray source in the vicinity of the southern blow-up region of the Cygnus Loop supernova remnant (Miyata et al. 1998a). This source was the brightest X-ray source inside the Cygnus Loop observed during the ASCA survey project. The X-ray spectrum was well fitted by a power-law function with a photon index of −2.1±0.1-2.1 \pm 0.1. Short-term timing analysis was performed and no coherent pulsation was found. Follow-up observations with ASCA have revealed a large variation in X-ray intensity by a factor of ≃\simeq 50, whereas the spectral shape did not change within the statistical uncertainties. In the second ASCA observation, we found another X-ray source, AX J2050.0+2941, at the north east of AX J2049.6+2939. During the three ASCA observations, the X-ray intensity of AX J2050.0+2941 varied by a factor of ≃\simeq4. No coherent pulsations could be found for AX J2050.0+2941. We have performed optical photometric and spectroscopic observations in the vicinity of AX J2049.6+2939 at the Kitt Peak National Observatory (KPNO). As a result, all objects brighter than BB-band magnitude of 22 in the error box can be identified with normal stars. Combined with the X-ray results and the fact that there are no radio counterparts, AX J2049.6+2939 is not likely to be either an ordinary rotation-powered pulsar or an AGN. The nature of AX J2049.6+2939 is still unclear and further observations over a wide energy band are strongly required. As to AX J2050.0+2941, the long-term X-ray variability and the radio counterpart suggests that it is an AGN.Comment: 23 pages, 4 figures, Accepted for publication by Astrophysical Journa

    The X-Ray Structure of the Supernova Remnant 3C 400.2

    Get PDF
    We present here the results of an X-ray study of the supernova remnant 3C 400.2 (G53.6-2.2) using the ASCA data. 3C 400.2 has an unusual morphology at radio wavelengths, suggesting two SNRs superposed along the same line of sight, whereas its X-ray emission is known to be centrally peaked. We investigated the X-ray spectral variation across the remnant using the ASCA GIS and the ROSAT PSPC data. The X-ray spectra can be well fitted by thin thermal plasma models. However, there is no significant variation in the temperature and the ionization parameter across the remnant. We conclude that it is a single SNR rather than two overlapping SNRs. The centrally peaked X-ray morphology and the thin thermal emission with nearly cosmic abundances indicate that 3C 400.2 belongs to a class of ``mixed-morphology SNRs''. We found that the physical parameters of 3C 400.2 are similar to those of other mixed-morphology SNRs. The morphology of 3C 400.2 can be explained by a supernova explosion occurring near to the edge of an interstellar cloud.Comment: 8 pages, 4 figures, to appear in PASJ vol. 5

    Proton Irradiation Experiment for the X-ray Charge-Coupled Devices of the Monitor of All-sky X-ray Image mission onboard the International Space Station: I. Experimental Setup and Measurement of the Charge Transfer Inefficiency

    Get PDF
    We have investigated the radiation damage effects on a CCD to be employed in the Japanese X-ray astronomy mission including the Monitor of All-sky X-ray Image (MAXI) onboard the International Space Station (ISS). Since low energy protons release their energy mainly at the charge transfer channel, resulting a decrease of the charge transfer efficiency, we thus focused on the low energy protons in our experiments. A 171 keV to 3.91 MeV proton beam was irradiated to a given device. We measured the degradation of the charge transfer inefficiency (CTI) as a function of incremental fluence. A 292 keV proton beam degraded the CTI most seriously. Taking into account the proton energy dependence of the CTI, we confirmed that the transfer channel has the lowest radiation tolerance. We have also developed the different device architectures to reduce the radiation damage in orbit. Among them, the ``notch'' CCD, in which the buried channel implant concentration is increased, resulting in a deeper potential well than outside, has three times higher radiation tolerance than that of the normal CCD. We then estimated the charge transfer inefficiency of the CCD in the orbit of ISS, considering the proton energy spectrum. The CTI value is estimated to be 1.1e-5 per each transfer after two years of mission life in the worse case analysis if the highest radiation-tolerant device is employed. This value is well within the acceptable limit and we have confirmed the high radiation-tolerance of CCDs for the MAXI mission.Comment: 17 pages, 2 table, 12 figures. Accepted for publication of Japanese Journal of Applied Physics. High resolution file is available from http://wwwxray.ess.sci.osaka-u.ac.jp/~miyata/paper/proton_cti.pd

    Reflection Shocked Gas in the Cygnus Loop Supernova Remnant

    Get PDF
    We performed spectroscopic X-ray observations of the eastern and northern regions of the Cygnus Loop with the ASCA observatory. The X-ray surface brightness of these regions shows a complex structure in the ROSAT all-sky survey image. We carried out a spatially-resolved analysis for both regions and found that kTekT_{\rm e} did not increase toward the center region, but showed inhomogeneous structures. Such variation cannot be explained by a blast wave model propagating into a homogeneous interstellar medium. We thus investigated the interaction between a blast wave and an interstellar cloud. Two major emission mechanisms are plausible: a cloud evaporation model and a reflection shock model. In both regions, only a reflection shock model qualitatively explains our results. Our results suggest the existence of a large-scale interstellar cloud. We suppose that such a large-scale structure would be produced by a precursor.Comment: 27 pages, 15 figures. Accepted for publication of ApJ. High resolution and color figures are available at http://wwwxray.ess.sci.osaka-u.ac.jp/~miyata/paper/cygloop_reflection.pd

    The Radial Structure of the Cygnus Loop Supernova Remnant --- Possible evidence of a cavity explosion ---

    Get PDF
    We observed the North-East (NE) Limb toward the center region of the Cygnus Loop with the ASCA Observatory. We found a radial variation of electron temperature (kTe) and ionization timescale (log(\tau)) whereas no variation could be found for the abundances of heavy elements. In this paper, we re-analyzed the same data set and new observations with the latest calibration files. Then we constructed the precise spatial variations of kTe, log(\tau), and abundances of O, Ne, Mg, Si, and Fe over the field of view (FOV). We found a spatial variation not only in kTe and in log(\tau) but also in most of heavy elements. As described in Miyata et al. (1994), values of kTe increase and those of log(\tau) decrease toward the inner region. We found that the abundance of heavy elements increases toward the inner region. The radial profiles of O, Ne, and Fe show clear jump structures at a radius of 0.9 Rs, where Rs is the shock radius. Outside of 0.9 Rs, abundances of all elements are constant. On the contrary, inside of 0.9 Rs, abundances of these elements are 20--30 % larger than those obtained outside of 0.9 Rs. The radial profile of kTe also shows the jump structure at 0.9 Rs. This means that the hot and metal rich plasma fills the volume inside of 0.9 Rs. We concluded that this jump structure was the possible evidence for the pre-existing cavity produced by the precursor. If the ejecta fills inside of 0.9 Rs, the total mass of the ejecta was roughly 4\Msun. We then estimated the main-sequence mass to be roughly 15\Msun, which supports the massive star in origin of the Cygnus Loop supernova remnant and the existence of a pre-existing cavity.Comment: 37 pages, 14 figures. Accepted for publication of Ap

    The MAXI Mission on the ISS: Science and Instruments for Monitoring All Sky X-Ray Images

    Full text link
    The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS. It is scheduled for launch in the middle of 2009 to monitor all-sky X-ray objects on every ISS orbit. MAXI will be more powerful than any previous X-ray All Sky Monitor (ASM) payloads, being able to monitor hundreds of AGN. MAXI will provide all sky images of X-ray sources of about 20 mCrab in the energy band of 2-30 keV from observation on one ISS orbit (90 min), about 4.5 mCrab for one day, and about 1 mCrab for one month. A final detectability of MAXI could be 0.2 mCrab for 2 year observations.Comment: 12 pages, 11 figures, accepted for publication in Publications of the Astronomical Society of Japa
    • 

    corecore