4,199 research outputs found
Retrieval Properties of Hopfield and Correlated Attractors in an Associative Memory Model
We examine a previouly introduced attractor neural network model that
explains the persistent activities of neurons in the anterior ventral temporal
cortex of the brain. In this model, the coexistence of several attractors
including correlated attractors was reported in the cases of finite and
infinite loading. In this paper, by means of a statistical mechanical method,
we study the statics and dynamics of the model in both finite and extensive
loading, mainly focusing on the retrieval properties of the Hopfield and
correlated attractors. In the extensive loading case, we derive the evolution
equations by the dynamical replica theory. We found several characteristic
temporal behaviours, both in the finite and extensive loading cases. The
theoretical results were confirmed by numerical simulations.Comment: 12 pages, 7 figure
Response Functions Improving Performance in Analog Attractor Neural Networks
In the context of attractor neural networks, we study how the equilibrium
analog neural activities, reached by the network dynamics during memory
retrieval, may improve storage performance by reducing the interferences
between the recalled pattern and the other stored ones. We determine a simple
dynamics that stabilizes network states which are highly correlated with the
retrieved pattern, for a number of stored memories that does not exceed
, where depends on the global
activity level in the network and is the number of neurons.Comment: 13 pages (with figures), LaTex (RevTex), to appear on Phys.Rev.E (RC
Ordered phase and phase transitions in the three-dimensional generalized six-state clock model
We study the three-dimensional generalized six-state clock model at values of
the energy parameters, at which the system is considered to have the same
behavior as the stacked triangular antiferromagnetic Ising model and the
three-state antiferromagnetic Potts model. First, we investigate ordered phases
by using the Monte Carlo twist method (MCTM). We confirmed the existence of an
incompletely ordered phase (IOP1) at intermediate temperature, besides the
completely ordered phase (COP) at low-temperature. In this intermediate phase,
two neighboring states of the six-state model mix, while one of them is
selected in the low temperature phase. We examine the fluctuation the mixing
rate of the two states in IOP1 and clarify that the mixing rate is very stable
around 1:1.
The high temperature phase transition is investigated by using
non-equilibrium relaxation method (NERM). We estimate the critical exponents
beta=0.34(1) and nu=0.66(4). These values are consistent with the 3D-XY
universality class. The low temperature phase transition is found to be of
first-order by using MCTM and the finite-size-scaling analysis
Quantum Monte Carlo Study on Magnetization Processes
A quantum Monte Carlo method combining update of the loop algorithm with the
global flip of the world line is proposed as an efficient method to study the
magnetization process in an external field, which has been difficult because of
inefficiency of the update of the total magnetization. The method is
demonstrated in the one dimensional antiferromagnetic Heisenberg model and the
trimer model. We attempted various other Monte Carlo algorithms to study
systems in the external field and compared their efficiency.Comment: 5 pages, 9 figures; added references for section 1, corrected typo
Growth Dynamics of Photoinduced Domains in Two-Dimensional Charge-Ordered Conductors Depending on Stabilization Mechanisms
Photoinduced melting of horizontal-stripe charge orders in
quasi-two-dimensional organic conductors
\theta-(BEDT-TTF)2RbZn(SCN)4[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene]
and
\alpha-(BEDT-TTF)2I3 is investigated theoretically. By numerically solving
the time-dependent Schr\"odinger equation, we study the photoinduced dynamics
in extended Peierls-Hubbard models on anisotropic triangular lattices within
the
Hartree-Fock approximation. The melting of the charge order needs more energy
for \theta-(BEDT-TTF)2RbZn(SCN)4 than for \alpha-(BEDT-TTF)2I3, which is a
consequence of the larger stabilization energy in \theta-(BEDT-TTF)2RbZn(SCN)4.
After local photoexcitation in the charge ordered states, the growth of a
photoinduced domain shows anisotropy. In \theta-(BEDT-TTF)2RbZn(SCN)4, the
domain hardly expands to the direction perpendicular to the horizontal-stripes.
This is because all the molecules on the hole-rich stripe are rotated in one
direction and those on the hole-poor stripe in the other direction. They
modulate horizontally connected transfer integrals homogeneously, stabilizing
the charge order stripe by stripe. In \alpha-(BEDT-TTF)2I3, lattice distortions
locally stabilize the charge order so that it is easily weakened by local
photoexcitation. The photoinduced domain indeed expands in the plane. These
results are consistent with recent observation by femtosecond reflection
spectroscopy.Comment: 9 pages, 8 figures, to appear in J. Phys. Soc. Jpn. Vol. 79 (2010)
No.
Structure of Metastable States in Phase Transitions with High-Spin Low-Spin Degree of Freedom
Difference of degeneracy of the low-spin (LS) and high-spin (HS) states
causes interesting entropy effects on spin-crossover phase transitions and
charge transfer phase transitions in materials composed of the spin-crossover
atoms. Mechanisms of the spin-crossover (SC) phase transitions have been
studied by using Wajnflasz model, where the degeneracy of the spin states (HS
or LS) is taken into account and cooperative natures of the spin-crossover
phase transitions have been well described. Recently, a charge transfer (CT)
phase transition due to electron hopping between LS and HS sites has been
studied by using a generalized Wajnflasz model. In the both systems of SC and
CT, the systems have a high temperature structure (HT) and a low temperature
structure (LT), and the change between them can be a smooth crossover or a
discontinuous first order phase transition depending on the parameters of the
systems. Although apparently the standard SC system and the CT system are very
different, it is shown that both models are equivalent under a certain
transformation of variables. In both systems, the structure of metastable state
at low temperatures is a matter of interest. We study temperature dependence of
fraction of HT systematically in a unified model, and find several structures
of equilibrium and metastable states of the model as functions of system
parameters. In particular, we find a reentrant type metastable branch of HT in
a low temperature region, which would play an important role to study the
photo-irradiated processes of related materials.Comment: 19 pages, 11 figure
- …