35 research outputs found

    HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation

    Get PDF
    DNA ligase 1 (LIG1) is known as the major DNA ligase responsible for Okazaki fragment joining. Recent studies have implicated LIG3 complexed with XRCC1 as an alternative player in Okazaki fragment joining in cases where LIG1 is not functional, although the underlying mechanisms are largely unknown. Here, using a cell-free system derived from Xenopus egg extracts, we demonstrated the essential role of PARP1-HPF1 in LIG3-dependent Okazaki fragment joining. We found that Okazaki fragments were eventually ligated even in the absence of LIG1, employing in its place LIG3-XRCC1, which was recruited onto chromatin. Concomitantly, LIG1 deficiency induces ADP-ribosylation of histone H3 in a PARP1-HPF1-dependent manner. The depletion of PARP1 or HPF1 resulted in a failure to recruit LIG3 onto chromatin and a subsequent failure in Okazaki fragment joining in LIG1-depleted extracts. Importantly, Okazaki fragments were not ligated at all when LIG1 and XRCC1 were co-depleted. Our results suggest that a unique form of ADP-ribosylation signaling promotes the recruitment of LIG3 on chromatin and its mediation of Okazaki fragment joining as a backup system for LIG1 perturbation

    Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases.

    Get PDF
    Jumbo phages have DNA genomes larger than 200 kbp in large virions composed of an icosahedral head, tail, and other adsorption structures, and they are known to be abundant biological substances in nature. In this study, phages in leaf litter compost were screened for their potential to suppress rice seedling rot disease caused by the bacterium Burkholderia glumae, and a novel phage was identified in a filtrate-enriched suspension of leaf litter compost. The phage particles consisted of a rigid tailed icosahedral head and contained a DNA genome of 227,105 bp. The phage could lyse five strains of B. glumae and six strains of Burkholderia plantarii. The phage was named jumbo Burkholderia phage FLC6. Proteomic tree analysis revealed that phage FLC6 belongs to the same clade as two jumbo Ralstonia phages, namely RSF1 and RSL2, which are members of the genus Chiangmaivirus (family: Myoviridae; order: Caudovirales). Interestingly, FLC6 could also lyse two strains of Ralstonia pseudosolanacearum, the causal agent of bacterial wilt, suggesting that FLC6 has a broad host range that may make it especially advantageous as a bio-control agent for several bacterial diseases in economically important crops. The novel jumbo phage FLC6 may enable leaf litter compost to suppress several bacterial diseases and may itself be useful for controlling plant diseases in crop cultivation

    Sensitivity Improvement of Infrared Imaging Video Bolometer for Divertor Plasma Measurement

    Get PDF
    The sensitivity of an infrared imaging video bolometer (IRVB) was improved for the measurement of relatively low energy plasma radiation from the viewpoint of the metal foil absorber material. The photon energy of the radiation was considered up to 1 keV for the divertor plasma measurement. The thickness of the foil absorber was evaluated not only for conventional heavy elements, e.g., platinum, but also for light elements by the relation between the photon energy and attenuation length and by mechanical strength. A heat-transfer calculation using ANSYS suggested that light elements with practical foil thickness provide a higher temperature rise of the foil absorber compared with heavier elements with practical foil thickness. The maximum of the temperature rise was evaluated using He–Ne laser irradiation onto absorber samples. The material dependence of the temperature rise has a similar tendency between calculations and experiments. Experimentally, the sensitivity of the IRVB improved from 280 to 110 µW/cm2 using titanium with 1 µm thickness compared with conventional platinum with 2.5 µm thickness. Consequently, the signal-to-noise ratio of the IRVB could be improved from 2.8 to 9.1

    CNVs in Three Psychiatric Disorders

    Get PDF
    BACKGROUND: We aimed to determine the similarities and differences in the roles of genic and regulatory copy number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD). METHODS: Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD. RESULTS: In genic CNVs, we found an increased burden of smaller (500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neurodevelopmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities between BD and SCZ or ASD (r = 0.25–0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in enhancers and promoters in brain tissue. CONCLUSIONS: BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neurodevelopmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms, including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD

    Complete genomic sequence of a novel phytopathogenic Burkholderia phage isolated from fallen leaf compost

    Get PDF
    In contrast to most Burkholderia species, which affect humans or animals, Burkholderia glumae is a bacterial pathogen of plants that causes panicle blight disease in rice seedlings, resulting in serious damage to rice cultivation. Attempts to combat this disease would benefit from research involving a phage known to attack this type of bacterium. Some Burkholderia phages have been isolated from soil or bacterial species in the order Burkholderiales, but so far there has been no report of a complete genome nucleotide sequence of a phage of B. glumae. In this study, a novel phage, FLC5, of the phytopathogen B. glumae was isolated from leaf compost, and its complete genome nucleotide sequence was determined. The genome consists of a 32,090-bp circular DNA element and exhibits a phylogenetic relationship to members of the genus Peduovirus, with closest similarity to B. multivorans phage KS14. In addition to B. glumae, FLC5 was also able to lyse B. plantarii, a pathogen causing rice bacterial damping-off disease. This is the first report of isolation of a P2-like phage from phytopathogenic Burkholderia, determination of its complete genomic sequence, and the finding of its potential to infect two Burkholderia species: B. glumae and B. plantarii.</p
    corecore