16 research outputs found

    Short-hairpin RNAs synthesized by T7 phage polymerase do not induce interferon

    Get PDF
    RNA interference (RNAi) mediated by small-interfering RNAs (siRNAs) is a highly effective gene-silencing mechanism with great potential for gene-therapeutic applications. siRNA agents also exert non-target-related biological effects and toxicities, including immune-system stimulation. Specifically, siRNA synthesized from the T7 RNA polymerase system triggers a potent induction of type-I interferon (IFN) in a variety of cells. Single-stranded RNA also stimulates innate cytokine responses in mammals. We found that pppGn (n = 2,3) associated with the 5′-end of the short-hairpin RNA (shRNA) from the T7 RNA polymerase system did not induce detectable amounts of IFN. The residual amount of guanine associated with the 5′-end and hairpin structures of the transcript was proportional to the reduction of the IFN response. Here we describe a T7 pppGn (n = 2,3) shRNA synthesis that does not induce the IFN response, and maintains the full efficacy of siRNA

    Suppression of Hepatitis C Virus Core Protein by Short Hairpin RNA Expression Vectors in the Core Protein Expression HUH-7 Cells

    Get PDF
    Short hairpin RNAs (shRNAs) efficiently inhibit gene expression by RNA interference. Here, we report the efficient inhibition by DNA-based vector-derived shRNAs of core protein expression in Huh-7 cells. The shRNAs were designed to target the core region of the hepatitis C virus (HCV) genome. The core region is the most conserved region in the HCV genome, making it an ideal target for shRNAs. We identified an effective site on the core region for suppression of the HCV core protein. The HCV core protein in core protein-expressing Huh-7 cells was downregulated by core protein-shRNA expression vectors (core-shRNA-452, 479, and 503). Our results support the feasibility of using shRNA-based gene therapy to inhibit HCV core protein production

    Inhibition of HIV-1 gene expression by retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage by tRNase ZL

    Get PDF
    The tRNA 3′-processing endoribonuclease (tRNase Z or 3′ tRNase; EC 3.1.26.11) is an essential enzyme that removes the 3′ trailer from pre-tRNA. The long form (tRNase ZL) can cleave a target RNA in vitro at the site directed by an appropriate small-guide RNA (sgRNA). Here, we investigated whether this sgRNA/tRNase ZL strategy could be applied to gene therapy for AIDS. We tested the ability of four sgRNA-expression plasmids to inhibit HIV-1 gene expression in COS cells, using a transient-expression assay. The three sgRNAs guide inhibition of HIV-1 gene expression in cultured COS cells. Analysis of the HIV-1 mRNA levels suggested that sgRNA directed the tRNase ZL to mediate the degradation of target RNA. The observation that sgRNA was localized primarily in nuclei suggests that tRNase ZL cleaves the HIV-1 mRNA when complexed with sgRNA in this location. We also examined the ability of two retroviral vectors expressing sgRNA to suppress HIV-1 expression in HIV-1-infected Jurkat T cells. sgRNA-SL4 suppressed HIV-1 expression almost completely in infected cells for up to 18 days. These results suggest that the sgRNA/tRNase ZL approach is effective in downregulating HIV-1 gene expression

    Inhibition of Human Immunodeficiency Virus Type 1 Activity In Vitro by a New Self-Stabilized Oligonucleotide with Guanosine-Thymidine Quadruplex Motifs

    No full text
    An oligonucleotide with a dimeric hairpin guanosine quadruplex (basket type structure) (dG3T4G3-s), containing phosphorothioate groups, was able to inhibit human immunodeficiency virus type 1 (HIV-1)-induced syncytium formation and virus production (as measured by p24 core antigen expression) in peripheral blood mononuclear cells. This oligonucleotide lacks primary sequence homology with the complementary (antisense) sequences to the HIV-1 genome. Furthermore, this oligonucleotide may have increased nuclease resistance. The activity of this oligonucleotide was increased when the phosphodiester backbone was replaced with a phosphorothioate backbone. In vivo results showed that dG3T4G3-s was capable of blocking the interaction between gp120 and CD4. We also found that dG3T4G3-s specifically inhibits the entry of T-cell line-tropic HIV-1 into cells. This compound is a viable candidate for evaluation as a therapeutic agent against HIV-1 in humans
    corecore