388 research outputs found

    Passive spiral formation from halo gas starvation: Gradual transformation into S0s

    Full text link
    Recent spectroscopic and high resolution HSTHST-imaging observations have revealed significant numbers of ``passive'' spiral galaxies in distant clusters, with all the morphological hallmarks of a spiral galaxy (in particular, spiral arm structure), but with weak or absent star formation. Exactly how such spiral galaxies formed and whether they are the progenitors of present-day S0 galaxies is unclear. Based on analytic arguments and numerical simulations of the hydrodynamical evolution of a spiral galaxy's halo gas (which is a likely candidate for the source of gas replenishment for star formation in spirals), we show that the origin of passive spirals may well be associated with halo gas stripping. Such stripping results mainly from the hydrodynamical interaction between the halo gas and the hot intracluster gas. Our numerical simulations demonstrate that even if a spiral orbits a cluster with a pericenter distance \sim 3 times larger than the cluster core radius, \sim 80 % of the halo gas is stripped within a few Gyr and, accordingly, cannot be accreted by the spiral. Furthermore, our study demonstrates that this dramatic decline in the gaseous infall rate leads to a steady increase in the QQ parameter for the disk, with the spiral arm structure, although persisting, becoming less pronounced as the star formation rate gradually decreases. These results suggest that passive spirals formed in this way, gradually evolve into red cluster S0s.Comment: 13 pages 4 figures (fig.1 = jpg format), accepted by Ap

    Experimental Studies on an Embedded Structure-Soil Interaction

    Get PDF
    This paper describes the results of experimental studies performed the evaluation of the embedment effects on the dynamic characteristics of the structure and the correlation anlayses between the test results and the calculated results. The vibration tests of large scale models constructed on actual soil are carried out with the purpose of obtaining the basic data for verification study on analysis codes. In the correlation analyses, the methods used here are the sway-rocking model and the axisymmetric finite element method. These methods are confirmed to be applicable to analyse the response or the embedded structures

    Excitonic Aharonov-Bohm Effect in Isotopically Pure 70Ge/Si Type-II Quantum Dots

    Full text link
    We report on a magneto-photoluminescence study of isotopically pure 70Ge/Si self-assembled type-II quantum dots. Oscillatory behaviors attributed to the Aharonov-Bohm effect are simultaneously observed for the emission energy and intensity of excitons subject to an increasing magnetic field. When the magnetic flux penetrates through the ring-like trajectory of an electron moving around each quantum dot, the ground state of an exciton experiences a change in its angular momentum. Our results provide the experimental evidence for the phase coherence of a localized electron wave function in group-IV Ge/Si self-assembled quantum structures.Comment: 4 pages, 4 figure
    corecore