297 research outputs found

    Clonal origin of Epstein-Barr virus-infected T/NK-cell subpopulations in chronic active Epstein-Barr virus infection

    Get PDF
    Clonal expansion of Epstein-Barr virus (EBV) infected B-cells occasionally occurs in immunocompromized subjects. EBV-infected T/natural killer (NK)-cells proliferate in patients with chronic active EBV infection (CAEBV) that is a rare mononucleosis syndrome. It is classified into either T-cell type or NK-cell type according to the primary target of infection, while the pathogenesis remains unclear. To search the clonal origin of EBV-infected T/NK-cells, virus distribution and clonotype were assessed by using highly purified cell fractions obtained from 6 patients. Patient 1 had a monoclonal proliferation of EBV-infected T-cell receptor Vδ2/Vγ9-expressing cells, and carried lower copy number of EBV in αβT-cells. Patients 2 and 3 had a clonal expansion of EBV-infected CD4+T-cells, and lower EBV load in CD56+cells. Patients 4, 5 and 6 had an expansion of CD56+cells with higher EBV load than CD3+cells. EBV-terminal repeats were determined as clonal bands in the minor targeted populations of 5 patients. The size of terminal repeats indicated the same clonotype in minor subsets as in major subsets of 4 patients. However, EBV was not detected in bone marrow-derived lineage negative CD34+cells of patients. These results suggested that EBV could infect T/NK-cells at differentiation stage, but spared bone marrow CD34+hematopoietic stem cells in CAEBV patients

    Enforced Granulocyte/Macrophage Colony-stimulating Factor Signals Do Not Support Lymphopoiesis, but Instruct Lymphoid to Myelomonocytic Lineage Conversion

    Get PDF
    We evaluated the effects of ectopic granulocyte/macrophage colony-stimulating factor (GM-CSF) signals on hematopoietic commitment and differentiation. Lineage-restricted progenitors purified from mice with the ubiquitous transgenic human GM-CSF receptor (hGM-CSFR) were used for the analysis. In cultures with hGM-CSF alone, hGM-CSFR–expressing (hGM-CSFR+) granulocyte/monocyte progenitors (GMPs) and megakaryocyte/erythrocyte progenitors (MEPs) exclusively gave rise to granulocyte/monocyte (GM) and megakaryocyte/erythroid (MegE) colonies, respectively, providing formal proof that GM-CSF signals support the GM and MegE lineage differentiation without affecting the physiological myeloid fate. hGM-CSFR transgenic mice were crossed with mice deficient in interleukin (IL)-7, an essential cytokine for T and B cell development. Administration of hGM-CSF in these mice could not restore T or B lymphopoiesis, indicating that enforced GM-CSF signals cannot substitute for IL-7 to promote lymphopoiesis. Strikingly, >50% hGM-CSFR+ common lymphoid progenitors (CLPs) and >20% hGM-CSFR+ pro-T cells gave rise to granulocyte, monocyte, and/or myeloid dendritic cells, but not MegE lineage cells in the presence of hGM-CSF. Injection of hGM-CSF into mice transplanted with hGM-CSFR+ CLPs blocked their lymphoid differentiation, but induced development of GM cells in vivo. Thus, hGM-CSF transduces permissive signals for myeloerythroid differentiation, whereas it transmits potent instructive signals for the GM differentiation to CLPs and early T cell progenitors. These data suggest that a majority of CLPs and a fraction of pro-T cells possess plasticity for myelomonocytic differentiation that can be activated by ectopic GM-CSF signals, supporting the hypothesis that the down-regulation of GM-CSFR is a critical event in producing cells with a lymphoid-restricted lineage potential

    HLA-Haploidentical Peripheral Blood Stem Cell Transplantation with Post-Transplant Cyclophosphamide after Busulfan-Containing Reduced-Intensity Conditioning

    Get PDF
    AbstractAllogeneic hematopoietic stem cell transplantation (allo-SCT) using post-transplant cyclophosphamide (PTCy) is increasingly performed. We conducted a multicenter phase II study to evaluate the safety and efficacy of PTCy-based HLA-haploidentical peripheral blood stem cell transplantation (PTCy-haploPBSCT) after busulfan-containing reduced-intensity conditioning. Thirty-one patients were enrolled; 61% patients were not in remission and 42% patients had a history of prior allo-SCT. Neutrophil engraftment was achieved in 87% patients with a median of 19 days. The cumulative incidence of grades II to IV and III to IV acute graft-versus-host disease (GVHD) and chronic GVHD at 1 year were 23%, 3%, and 15%, respectively. No patients developed severe chronic GVHD. Day 100 nonrelapse mortality (NRM) rate was 19.4%. Overall survival, relapse, and disease-free survival rates were 45%, 45%, and 34%, respectively, at 1 year. Subgroup analysis showed that patients who had a history of prior allo-SCT had lower engraftment, higher NRM, and lower overall survival than those not receiving a prior allo-SCT. Our results suggest that PTCy-haploPBSCT after busulfan-containing reduced-intensity conditioning achieved low incidences of acute and chronic GVHD and NRM and stable donor engraftment and low NRM, particularly in patients without a history of prior allo-SCT

    Dwarf Novae in the Shortest Orbital Period Regime: I. A New Short Period Dwarf Nova, OT J055717+683226

    Full text link
    We report the observation of a new dwarf nova, OT J055717+683226, during its first-ever recorded superoutburst in December 2006. Our observation shows that this object is an SU UMa-type dwarf nova having a very short superhump period of 76.67+/- 0.03 min (0.05324+/-0.00002 d). The next superoutburst was observed in March 2008. The recurrence time of superoutbursts (supercycle) is, hence, estimated to be ~480 d. The supercycle is much shorter than those of WZ Sge-type dwarf novae having supercycles of >~ 10 yr, which are a major population of dwarf novae in the shortest orbital period regime (<~85 min). Using a hierarchical cluster analysis, we identified seven groups of dwarf novae in the shortest orbital period regime. We identified a small group of objects that have short supercycles, small outburst amplitudes, and large superhump period excesses, compared with those of WZ Sge stars. OT J055717+683226 probably belongs to this group.Comment: 14 pages, 11 figures, accepted for publication in PAS
    corecore