47 research outputs found

    ヒト骨髄由来CD133陽性細胞を用いたラット陰茎海綿体神経の再生

    Get PDF
    Introduction. Erectile dysfunction remains a major complication after surgery of pelvic organs, especially after radical prostatectomy. Aim. The aim of this study was to assess the effect of endothelial progenitor cells on the regeneration of cavernous nerves in a rat injury model. Methods. A 2 mm length of the right and left cavernous nerves of 8-week-old male nude rats were excised. Alginate gel sponge sheets supplemented with 1 × 104 CD133+ cells derived from human bone marrow were then placed over the gaps on both sides (CD group). The same experiments were performed on sham-operated rats (SH group), rats with only the nerve excision (EX group), and rats with alginate gel sheets placed on the injured nerves (AL group). Main Outcome Measures. Immunofluorescence staining and molecular evaluation were performed 4 days later. Functional and histological evaluations were performed 12 weeks later. Results. The intracavernous pressure elicited by electrical stimulation and the neuronal nitric oxide synthasepositive area in surrounding tissues of the prostate was significantly greater in the CD group. Immunofluorescence microscopy showed that CD133+ cells were assimilated as vascular endothelial cells, and the real-time polymerase chain reaction showed upregulation of nerve growth factor and vascular endothelial growth factor in the alginate gel sponge sheets of the CD group. Conclusions. Transplantation of CD133+ cells accelerated the functional and histological recovery in this cavernous nerve injury model, and the recovery mechanism is thought to be angiogenesis and upregulation of growth factors. CD133+cells could be an optional treatment for cavernous nerve injury after prostatectomy in clinical settings.広島大学(Hiroshima University)博士(医学)Philosophy in Medical Sciencedoctora

    Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resveratrol is a natural polyphenolic compound known for its beneficial effects on energy homeostasis, and it also has multiple properties, including anti-oxidant, anti-inflammatory, and anti-tumor activities. Recently, silent information regulator genes (Sirtuins) have been identified as targets of resveratrol. Sirtuin 1 (SIRT1), originally found as an NAD<sup>+</sup>-dependent histone deacetylase, is a principal modulator of pathways downstream of calorie restriction, and the activation of SIRT1 ameliorates glucose homeostasis and insulin sensitivity. To date, the presence and physiological role of SIRT1 in the ovary are not known. Here we found that SIRT1 was localized in granulosa cells of the human ovary.</p> <p>Methods</p> <p>The physiological roles of resveratrol and SIRT1 in the ovary were analyzed. Immunohistochemistry was performed to localize the SIRT1 expression. SIRT1 protein expression of cultured cells and luteinized human granulosa cells was investigated by Western blot. Rat granulosa cells were obtained from diethylstilbestrol treated rats. The cells were treated with increasing doses of resveratrol, and subsequently harvested to determine mRNA levels and protein levels. Cell viability was tested by MTS assay. Cellular apoptosis was analyzed by caspase 3/7 activity test and Hoechst 33342 staining.</p> <p>Results</p> <p>SIRT1 protein was expressed in the human ovarian tissues and human luteinized granulosa cells. We demonstrated that resveratrol exhibited a potent concentration-dependent inhibition of rat granulosa cells viability. However, resveratrol-induced inhibition of rat granulosa cells viability is independent of apoptosis signal. Resveratrol increased mRNA levels of SIRT1, LH receptor, StAR, and P450 aromatase, while mRNA levels of FSH receptor remained unchanged. Western blot analysis was consistent with the results of quantitative real-time RT-PCR assay. In addition, progesterone secretion was induced by the treatment of resveratrol.</p> <p>Conclusions</p> <p>These results suggest a novel mechanism that resveratrol could enhance progesterone secretion and expression of luteinization-related genes in the ovary, and thus provide important implications to understand the mechanism of luteal phase deficiency.</p

    Genotype-Dependent Efficacy of a Dual PI3K/mTOR Inhibitor, NVP-BEZ235, and an mTOR Inhibitor, RAD001, in Endometrial Carcinomas

    Get PDF
    The PI3K (phosphatidylinositol-3-kinase)/mTOR (mammalian target of rapamycin) pathway is frequently activated in endometrial cancer through various PI3K/AKT-activating genetic alterations. We examined the antitumor effect of NVP-BEZ235—a dual PI3K/mTOR inhibitor—and RAD001—an mTOR inhibitor—in 13 endometrial cancer cell lines, all of which possess one or more alterations in PTEN, PIK3CA, and K-Ras. We also combined these compounds with a MAPK pathway inhibitor (PD98059 or UO126) in cell lines with K-Ras alterations (mutations or amplification). PTEN mutant cell lines without K-Ras alterations (n = 9) were more sensitive to both RAD001 and NVP-BEZ235 than were cell lines with K-Ras alterations (n = 4). Dose-dependent growth suppression was more drastically induced by NVP-BEZ235 than by RAD001 in the sensitive cell lines. G1 arrest was induced by NVP-BEZ235 in a dose-dependent manner. We observed in vivo antitumor activity of both RAD001 and NVP-BEZ235 in nude mice. The presence of a MEK inhibitor, PD98059 or UO126, sensitized the K-Ras mutant cells to NVP-BEZ235. Robust growth suppression by NVP-BEZ235 suggests that a dual PI3K/mTOR inhibitor is a promising therapeutic for endometrial carcinomas. Our data suggest that mutational statuses of PTEN and K-Ras might be useful predictors of sensitivity to NVP-BEZ235 in certain endometrial carcinomas

    Regeneration of rat corpora cavernosa tissue by transplantation of CD133+ cells derived from human bone marrow and placement of biodegradable gel sponge sheet

    No full text
    The objective is to develop an easier technique for regenerating corpora cavernosa tissue through transplantation of human bone marrow-derived CD133 + cells into a rat corpora cavernosa defect model. We excised 2 mm × 2 mm squares of the right corpora cavernosa of twenty-three 8-week-old male nude rats. Alginate gel sponge sheets supplemented with 1 × 10 4 CD133 + cells were then placed over the excised area of nine rats. Functional and histological evaluations were carried out 8 weeks later. The mean intracavernous pressure/mean arterial pressure ratio for the nine rats (0.34258 ± 0.0831) was significantly higher than that for eight rats with only the excision (0.0580 ± 0.0831, P = 0.0238) and similar to that for five rats for which the penis was exposed, and there was no excision (0.37228 ± 0.1051, P = 0.8266). Immunohistochemical analysis revealed that the nine fully treated rats had venous sinus-like structures and quantitative reverse transcription polymerase chain reaction analysis of extracts from their alginate gel sponge sheets revealed that the amounts of mRNA encoding the nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) were significantly higher than those for rats treated with alginate gel sheets without cell supplementation (NGF: P = 0.0309; VEGF: P < 0.0001). These findings show that transplantation of CD133 + cells accelerates functional and histological recovery in the corpora cavernosa defect model

    In vivo imaging of transplanted islets labeled with a novel cationic nanoparticle.

    Get PDF
    To monitor pancreatic islet transplantation efficiency, reliable noninvasive imaging methods, such as magnetic resonance imaging (MRI) are needed. Although an efficient uptake of MRI contrast agent is required for islet cell labeling, commercially-available magnetic nanoparticles are not efficiently transduced into cells. We herein report the in vivo detection of transplanted islets labeled with a novel cationic nanoparticle that allowed for noninvasive monitoring of islet grafts in diabetic mice in real time. The positively-charged nanoparticles were transduced into a β-cell line, MIN6 cells, and into isolated islets for 1 hr. MRI showed a marked decrease in the signal intensity on T1- and T2-weighted images at the implantation site of the labeled MIN 6 cells or islets in the left kidneys of mice. These data suggest that the novel positively-charged nanoparticle could be useful to detect and monitor islet engraftment, which would greatly aid in the clinical management of islet transplant patients
    corecore