14 research outputs found

    Effects of Kurozu concentrated liquid on adipocyte size in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kurozu concentrated liquid (KCL) is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats.</p> <p>Methods</p> <p>Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneous adipose tissue, lipid levels in the serum and liver, and the rate of fatty acid excretion were determined. Effects of KCL on pancreatic lipase activity and 3T3-L1 preadipocyte differentiation were investigated <it>in vitro</it>.</p> <p>Results</p> <p>In the KCL group, the average adipocyte size in subcutaneous and perirenal adipose tissues was significantly reduced. The KCL-administered rats displayed greater numbers of small adipocytes in the subcutaneous, perirenal and mesenteric adipose tissues than did rats from the other groups. In the KCL group, the DNA content in subcutaneous adipose tissue was significantly increased. The rate of fatty acid excretion was significantly increased in the KCL group. Furthermore, KCL significantly inhibited pancreatic lipase activity <it>in vitro</it>, and also significantly inhibited fat accumulation and mRNA expression of fatty acid binding protein 2 (aP2) and peroxisome proliferator-activated γ (PPARγ) in 3T3-L1 preadipocyte. The levels of serum and liver lipids, the concentration of serum glucose, and the levels of adiponectin were similar among the 3 groups.</p> <p>Conclusion</p> <p>Oral administration of KCL decreases the adipocyte size <it>via </it>inhibition of dietary fat absorption and reductions of PPARγ and aP2 mRNA expression levels in adipocytes.</p

    Identification and Functional Evaluation of Polyphenols That Induce Regulatory T Cells

    No full text
    Regulatory T cells (Tregs) and CD4(+)/CD25(+) T cells play an important role in the suppression of excessive immune responses, homeostasis of immune function, and oral tolerance. In this study, we screened for food-derived polyphenols that induce Tregs in response to retinaldehyde dehydrogenase (RALDH2) activation using macrophage-like THP-1 cells. THP-1 cells were transfected with an EGFP reporter vector whose expression is regulated under the control of mouse Raldh2 promoter and named THP-1 (Raldh2p-EGFP) cells. The THP-1 (Raldh2p-EGFP) cells were treated with 33 polyphenols after inducing their differentiation into macrophage-like cells using phorbol 12-myristate 13-acetate. Of the 33 polyphenols, five (kaempferol, quercetin, morin, luteolin and fisetin) activated Raldh2 promoter activity, and both quercetin and luteolin activated the endogenous Raldh2 mRNA expression and enzymatic activity. Furthermore, these two polyphenols increased transforming growth factor beta 1 and forkhead box P3 mRNA expression, suggesting that they have Treg-inducing ability. Finally, we verified that these polyphenols could induce Tregs in vivo and consequently induce IgA production. Oral administration of quercetin and luteolin increased IgA production in feces of mice. Therefore, quercetin and luteolin can induce Tregs via RALDH2 activation and consequently increase IgA production, suggesting that they can enhance intestinal barrier function

    Cell Aggregation Culture Induces Functional Differentiation of Induced Hepatocyte-like Cells through Activation of Hippo Signaling

    No full text
    Summary: Recent progress in direct lineage reprogramming has enabled the generation of induced hepatocyte-like (iHep) cells and revealed their potential as an alternative to hepatocytes for medical applications. However, the hepatic functions of iHep cells are insufficient compared with those of primary hepatocytes. Here, we show that cell-aggregate formation can rapidly induce growth arrest and hepatic maturation of iHep cells through activation of Hippo signaling. During formation of iHep cell aggregates, Yap inactivation is induced by actin reorganization and intercellular adhesion, leading to upregulation of Hnf1α expression in the absence of the Yap/Tead/Chd4 transcriptional repressor unit. Hnf1α then acts as a central transcription factor that regulates liver-enriched gene expression in iHep cell aggregates and induces functional differentiation of iHep cells. Moreover, iHep cell aggregates efficiently reconstitute injured liver tissues and support hepatic function after transplantation. Thus, iHep cell aggregates may provide insights into basic research and potential therapies for liver diseases. : Yamamoto et al. show that cell-aggregate formation induces functional differentiation of hepatocyte-like cells, designated iHep cells, which are directly induced from mouse fibroblasts. Hepatic maturation of iHep cells is regulated by activation of Hippo signaling that leads to upregulation of Hnf1α expression for induction of liver-enriched gene expression. Keywords: cell aggregate, iHep cell, hepatocyte, direct reprogramming, Hippo signaling, transcription factor, transplantatio

    Exosomes Derived from Fisetin-Treated Keratinocytes Mediate Hair Growth Promotion

    No full text
    Enhanced telomerase reverse transcriptase (TERT) levels in dermal keratinocytes can serve as a novel target for hair growth promotion. Previously, we identified fisetin using a system for screening food components that can activate the TERT promoter in HaCaT cells (keratinocytes). In the present study, we aimed to clarify the molecular basis of fisetin-induced hair growth promotion in mice. To this end, the dorsal skin of mice was treated with fisetin, and hair growth was evaluated 12 days after treatment. Histochemical analyses of fisetin-treated skin samples and HaCaT cells were performed to observe the effects of fisetin. The results showed that fisetin activated HaCaT cells by regulating the expression of various genes related to epidermogenesis, cell proliferation, hair follicle regulation, and hair cycle regulation. In addition, fisetin induced the secretion of exosomes from HaCaT cells, which activated β-catenin and mitochondria in hair follicle stem cells (HFSCs) and induced their proliferation. Moreover, these results revealed the existence of exosomes as the molecular basis of keratinocyte-HFSC interaction and showed that fisetin, along with its effects on keratinocytes, caused exosome secretion, thereby activating HFSCs. This is the first study to show that keratinocyte-derived exosomes can activate HFSCs and consequently induce hair growth

    SMARCD1 regulates senescence-associated lipid accumulation in hepatocytes

    No full text
    Cellular senescence: SMARCD1, a key molecule in lipid accumulation A team led by Yoshinori Katakura at Kyushu University tried to clarify the molecular mechanisms of pathogenesis of fatty liver, focused on SMARCD1, one of the identified senescence-associated genes, and revealed its pivotal roles in cellular senescence induction and lipid accumulation in hepatocytes. SMARCD1 is a member of the SWI/SNF chromatin remodeling complex family and known to regulate the transcription of target genes through the alteration of chromatin structure. The results obtained here suggest that dietary imbalance such as high-fat diet impaires expression of SMARCD1, which triggers cellular senescence and lipid accumulation in hepatocytes, indicating a potential role of SMARCD1 in the prevention of lifestyle-related diseases

    Identification and Functional Evaluation of Polyphenols That Induce Regulatory T Cells

    No full text
    Regulatory T cells (Tregs) and CD4+/CD25+ T cells play an important role in the suppression of excessive immune responses, homeostasis of immune function, and oral tolerance. In this study, we screened for food-derived polyphenols that induce Tregs in response to retinaldehyde dehydrogenase (RALDH2) activation using macrophage-like THP-1 cells. THP-1 cells were transfected with an EGFP reporter vector whose expression is regulated under the control of mouse Raldh2 promoter and named THP-1 (Raldh2p-EGFP) cells. The THP-1 (Raldh2p-EGFP) cells were treated with 33 polyphenols after inducing their differentiation into macrophage-like cells using phorbol 12-myristate 13-acetate. Of the 33 polyphenols, five (kaempferol, quercetin, morin, luteolin and fisetin) activated Raldh2 promoter activity, and both quercetin and luteolin activated the endogenous Raldh2 mRNA expression and enzymatic activity. Furthermore, these two polyphenols increased transforming growth factor beta 1 and forkhead box P3 mRNA expression, suggesting that they have Treg-inducing ability. Finally, we verified that these polyphenols could induce Tregs in vivo and consequently induce IgA production. Oral administration of quercetin and luteolin increased IgA production in feces of mice. Therefore, quercetin and luteolin can induce Tregs via RALDH2 activation and consequently increase IgA production, suggesting that they can enhance intestinal barrier function

    Direct reprogramming of human umbilical vein- and peripheral blood-derived endothelial cells into hepatic progenitor cells

    No full text
    The conditions to induce human hepatic progenitor cells from other cell types are unclear. Here, the authors reprogram human endothelial cells to hepatic progenitor cells by expressing FOXA3, HNF1A and HNF6, capable of giving rise to hepatocytes and cholangiocytes that reconstitute damaged liver tissues on transplantation
    corecore