217 research outputs found
Development of an advanced Compton camera with gaseous TPC and scintillator
A prototype of the MeV gamma-ray imaging camera based on the full
reconstruction of the Compton process has been developed. This camera consists
of a micro-TPC that is a gaseous Time Projection Chamber (TPC) and
scintillation cameras. With the information of the recoil electrons and the
scattered gamma-rays, this camera detects the energy and incident direction of
each incident gamma-ray. We developed a prototype of the MeV gamma-ray camera
with a micro-TPC and a NaI(Tl) scintillator, and succeeded in reconstructing
the gamma-rays from 0.3 MeV to 1.3 MeV. Measured angular resolutions of ARM
(Angular Resolution Measure) and SPD (Scatter Plane Deviation) for 356 keV
gamma-rays were and , respectively.Comment: 4 pages, 5 figures. Proceedings of the 6th International Workshop On
Radiation Imaging Detector
First Results from Dark Matter Search Experiment in the Nokogiriyama Underground Cell
An experiment to search for hypothetical particle dark matter using cryogenic
thermal detector, or bolometer is ongoing. The bolometer consists of eight
pieces of 21 g LiF absorbers and sensitive NTD germanium thermistors attached
to them and is installed in the Nokogiriyama underground cell which is a
shallow depth site ( m w.e.). We report on the results from the first
running for about ten days using this arrayed bolometer system together with
appropriate shieldings and muon veto counters. From the obtained energy spectra
the exclusion limits for the cross section of the elastic neutralino-proton
scattering are derived under commonly accepted astrophysical assumptions. The
sensitivity for the light neutralino with a mass below 5 GeV is improved by
this work.Comment: 8 pages, Revtex, 4 figure
Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays
We have studied the performance of two different types of front-end systems
for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels
multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64
pixels of which corresponds to the anode pixels of
H8500. One of the system is based on commercial ASIC chips in order to readout
every anode. The others are based on resistive charge divider network between
anodes to reduce readout channels. In both systems, each pixel (6mm) was
clearly resolved by flood field irradiation of Cs. We also investigated
the energy resolution of these systems and showed the performance of the
cascade connection of resistive network between some PMTs for large area
detectors.Comment: 9 pages, 6 figures, proceedings of the 7th International Workshop on
Radiation Imaging Detectors (IWORID7), submitted to NIM
Development of Large area Gamma-ray Camera with GSO(Ce) Scintillator Arrays and PSPMTs
We have developed a position-sensitive scintillation camera with a large area
absorber for use as an advanced Compton gamma-ray camera. At first we tested
GSO(Ce) crystals. We compared light output from the GSO(Ce) crystals under
various conditions: the method of surface polishing, the concentration of Ce,
and co-doping Zr. As a result, we chose the GSO(Ce) crystals doped with only
0.5 mol% Ce, and its surface polished by chemical etching as the scintillator
of our camera. We also made a 1616 cm scintillation camera which
consisted of 9 position-sensitive PMTs (PSPMTs Hamamatsu flat-panel H8500), the
each of which had 88 anodes with a pitch of 6 mm and coupled to
88 arrays of pixelated 613 mm GSO(Ce) scintillators.
For the readout system of the 576 anodes of the PMTs, we used chained resistors
to reduce the number of readout channels down to 48 to reduce power
consumption. The camera has a position resolution of less than 6mm and a
typical energy resolution of 10.5% (FWHM) at 662 keV at each pixel in a large
area of 1616 cm. %to choose the best scintillator for our project.
Furthermore we constructed a 1616 array of 313 mm
pixelated GSO(Ce) scintillators, and glued it to a PMT H8500. This camera had
the position resolution of less than 3mm, over an area of 55 cm,
except for some of the edge pixels; the energy resolution was typically 13%
(FWHM) at 662 keV.Comment: Proceedings of PSD7 appear in NIM
An Electron-Tracking Compton Telescope for a Survey of the Deep Universe by MeV gamma-rays
Photon imaging for MeV gammas has serious difficulties due to huge
backgrounds and unclearness in images, which are originated from incompleteness
in determining the physical parameters of Compton scattering in detection,
e.g., lack of the directional information of the recoil electrons. The recent
major mission/instrument in the MeV band, Compton Gamma Ray
Observatory/COMPTEL, which was Compton Camera (CC), detected mere
persistent sources. It is in stark contrast with 2000 sources in the GeV
band. Here we report the performance of an Electron-Tracking Compton Camera
(ETCC), and prove that it has a good potential to break through this stagnation
in MeV gamma-ray astronomy. The ETCC provides all the parameters of
Compton-scattering by measuring 3-D recoil electron tracks; then the Scatter
Plane Deviation (SPD) lost in CCs is recovered. The energy loss rate (dE/dx),
which CCs cannot measure, is also obtained, and is found to be indeed helpful
to reduce the background under conditions similar to space. Accordingly the
significance in gamma detection is improved severalfold. On the other hand, SPD
is essential to determine the point-spread function (PSF) quantitatively. The
SPD resolution is improved close to the theoretical limit for multiple
scattering of recoil electrons. With such a well-determined PSF, we demonstrate
for the first time that it is possible to provide reliable sensitivity in
Compton imaging without utilizing an optimization algorithm. As such, this
study highlights the fundamental weak-points of CCs. In contrast we demonstrate
the possibility of ETCC reaching the sensitivity below erg
cm s at 1 MeV.Comment: 19 pages, 12 figures, Accepted to the Astrophysical Journa
- …