46 research outputs found

    Helicity sensitive terahertz radiation detection by field effect transistors

    Get PDF
    Terahertz light helicity sensitive photoresponse in GaAs/AlGaAs high electron mobility transistors. The helicity dependent detection mechanism is interpreted as an interference of plasma oscillations in the channel of the field-effect-transistors (generalized Dyakonov-Shur model). The observed helicity dependent photoresponse is by several orders of magnitude higher than any earlier reported one. Also linear polarization sensitive photoresponse was registered by the same transistors. The results provide the basis for a new sensitive, all-electric, room-temperature and fast (better than 1 ns) characterisation of all polarization parameters (Stokes parameters) of terahertz radiation. It paves the way towards terahertz ellipsometry and polarization sensitive imaging based on plasma effects in field-effect-transistors.Comment: 7 pages, 4 figure

    Noncommutativity and theta-locality

    Full text link
    In this paper, we introduce the condition of theta-locality which can be used as a substitute for microcausality in quantum field theory on noncommutative spacetime. This condition is closely related to the asymptotic commutativity which was previously used in nonlocal QFT. Heuristically, it means that the commutator of observables behaves at large spacelike separation like exp⁥(−∣x−y∣2/Ξ)\exp(-|x-y|^2/\theta), where Ξ\theta is the noncommutativity parameter. The rigorous formulation given in the paper implies averaging fields with suitable test functions. We define a test function space which most closely corresponds to the Moyal star product and prove that this space is a topological algebra under the star product. As an example, we consider the simplest normal ordered monomial :ϕ⋆ϕ::\phi\star\phi: and show that it obeys the theta-locality condition.Comment: LaTeX, 17 pages, no figures; minor changes to agree with published versio

    Twisted convolution and Moyal star product of generalized functions

    Full text link
    We consider nuclear function spaces on which the Weyl-Heisenberg group acts continuously and study the basic properties of the twisted convolution product of the functions with the dual space elements. The final theorem characterizes the corresponding algebra of convolution multipliers and shows that it contains all sufficiently rapidly decreasing functionals in the dual space. Consequently, we obtain a general description of the Moyal multiplier algebra of the Fourier-transformed space. The results extend the Weyl symbol calculus beyond the traditional framework of tempered distributions.Comment: LaTeX, 16 pages, no figure

    Wavefronts may move upstream in doped semiconductor superlattices

    Get PDF
    In weakly coupled, current biased, doped semiconductor superlattices, domain walls may move upstream against the flow of electrons. For appropriate doping values, a domain wall separating two electric field domains moves downstream below a first critical current, it remains stationary between this value and a second critical current, and it moves upstream above. These conclusions are reached by using a comparison principle to analyze a discrete drift-diffusion model, and validated by numerical simulations. Possible experimental realizations are suggested.Comment: 12 pages, 11 figures, 2-column RevTex, Phys. Rev. E 61, 1 May 200

    Ionization of deep impurities by far-infrared radiation

    Get PDF
    An analysis is made of the ionization of deep impurity centers by high-intensity far-infrared and submillimeter-wavelength radiation, with photon energies tens of times lower than the impurity ionization energy. Within a broad range of intensities and wavelengths, terahertz electric fields of the exciting radiation act as a dc field. Under these conditions, deep-center ionization can be described as multiphonon-assisted tunneling, in which carrier emission is accompanied by defect tunneling in configuration space and electron tunneling in the electric field. The field dependence of the ionization probability permits one to determine the defect tunneling times and the character of the defect adiabatic potentials. The ionization probability deviates from the field dependence e(E)}exp(E2/Ec 2) (where E is the wave field, and Ec is a characteristic field) corresponding to multiphonon-assisted tunneling ionization in relatively low fields, where the defects are ionized through the Poole–Frenkel effect, and in very strong fields, where the ionization is produced by direct tunneling without thermal activation. The effects resulting from the high radiation frequency are considered and it is shown that, at low temperatures, they become dominant
    corecore