292 research outputs found
FUS Transgenic Rats Develop the Phenotypes of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration
Fused in Sarcoma (FUS) proteinopathy is a feature of frontotemporal lobar dementia (FTLD), and mutation of the fus gene segregates with FTLD and amyotrophic lateral sclerosis (ALS). To study the consequences of mutation in the fus gene, we created transgenic rats expressing the human fus gene with or without mutation. Overexpression of a mutant (R521C substitution), but not normal, human FUS induced progressive paralysis resembling ALS. Mutant FUS transgenic rats developed progressive paralysis secondary to degeneration of motor axons and displayed a substantial loss of neurons in the cortex and hippocampus. This neuronal loss was accompanied by ubiquitin aggregation and glial reaction. While transgenic rats that overexpressed the wild-type human FUS were asymptomatic at young ages, they showed a deficit in spatial learning and memory and a significant loss of cortical and hippocampal neurons at advanced ages. These results suggest that mutant FUS is more toxic to neurons than normal FUS and that increased expression of normal FUS is sufficient to induce neuron death. Our FUS transgenic rats reproduced some phenotypes of ALS and FTLD and will provide a useful model for mechanistic studies of FUS–related diseases
ACE2-Mediated Reduction of Oxidative Stress in the Central Nervous System Is Associated with Improvement of Autonomic Function
Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII) into Ang-(1–7), ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells) treated with AngII and infected with Ad-hACE2. ACE2 overexpression resulted in a reduction of reactive oxygen species (ROS) formation. In vivo, ACE2 knockout (ACE2−/y) mice and non-transgenic (NT) littermates were infused with AngII (10 days) and infected with Ad-hACE2 in the paraventricular nucleus (PVN). Baseline blood pressure (BP), AngII and brain ROS levels were not different between young mice (12 weeks). However, cardiac sympathetic tone, brain NADPH oxidase and SOD activities were significantly increased in ACE2−/y. Post infusion, plasma and brain AngII levels were also significantly higher in ACE2−/y, although BP was similarly increased in both genotypes. ROS formation in the PVN and RVLM was significantly higher in ACE2−/y mice following AngII infusion. Similar phenotypes, i.e. increased oxidative stress, exacerbated dysautonomia and hypertension, were also observed on baseline in mature ACE2−/y mice (48 weeks). ACE2 gene therapy to the PVN reduced AngII-mediated increase in NADPH oxidase activity and normalized cardiac dysautonomia in ACE2−/y mice. Altogether, these data indicate that ACE2 gene deletion promotes age-dependent oxidative stress, autonomic dysfunction and hypertension, while PVN-targeted ACE2 gene therapy decreases ROS formation via NADPH oxidase inhibition and improves autonomic function. Accordingly, ACE2 could represent a new target for the treatment of hypertension-associated dysautonomia and oxidative stress
Dietary phenethylisothiocyanate attenuates bowel inflammation in mice
<p>Abstract</p> <p>Background</p> <p>Phenethylisothiocyanate (PEITC) is produced by Brassica food plants. PEO is a <b>P</b>EITC <b>E</b>ssential <b>O</b>il containing >95% natural PEITC. PEITC is known to produce various health benefits but its effect in alleviation of ulcerative colitis signs is unknown.</p> <p>Results</p> <p>In two efficacy studies (acute and chronic) oral administration of PEO was effective at remitting acute and chronic signs of ulcerative colitis (UC) in mice. Disease activity, histology and biochemical characteristics were measured in the treated animals and were compared with appropriate controls. PEO treatment significantly improved body weights and stool consistency as well as decreased intestinal bleeding. PEO treatment also reduced mucosal inflammation, depletion of goblet cells and infiltration of inflammatory cells. Attenuation of proinflammatory interleukin1β production was observed in the colons of PEO-treated animals. Expression analyses were also carried out for immune function related genes, transcription factors and cytokines in lipopolysaccharide-activated mouse macrophage cells. PEO likely affects an intricate network of immune signaling genes including a novel concentration dependent reduction of total cellular Signal Transducer and Activator of Transcription 1 (STAT1) as well as nuclear phosphorylated-STAT1 (activated form of STAT1). A PEO-concentration dependent decrease of mRNA of C-X-C motif ligand 10 (a STAT1 responsive chemokine) and Interleukin 6 were also observed.</p> <p>Conclusions</p> <p>PEO might be a promising candidate to develop as a treatment for ulcerative colitis patients. The disease attenuation by PEO is likely associated with suppression of activation of STAT1 transcription and inhibition of pro-inflammatory cytokines.</p
MicroRNA Dysregulation in Colon Cancer Microenvironment Interactions: The Importance of Small Things in Metastases
The influence of the microenvironment through the various steps of cancer progression is signed by different cytokines and growth factors, that could directly affect cell proliferation and survival, either in cancer and stromal cells. In colon cancer progression, the cooperation between hypoxia, IL-6 and VEGF-A165 could regulate the DNA repair capacity of the cell, whose impairment is the first step of colon cancer development. This cooperation redirects the activity of proteins involved in the metabolic shift and cell death, affecting the cell fate. The pathways triggered by micro environmental factors could modulate cancer-related gene transcription, affecting also small non coding mRNA, microRNAs. MicroRNAs have emerged as key post-transcriptional regulators of gene expression, directly involved in human cancers. The present review will focus first on the intertwined connection between cancer microenvironment and aberrant expression of microRNAs which contribute to carcinogenesis. In particular, the epigenetic mechanisms triggered by tissue microenvironment will be discussed, in view of the recent identification of miRNAs able to directly or indirectly modulate the epigenetic machinery (epi-miRNAs) and that are involved in the epithelial to mesenchimal transition and metastases development
The JNK Inhibitor XG-102 Protects against TNBS-Induced Colitis
The c-Jun N-terminal kinase (JNK)-inhibiting peptide D-JNKI-1, syn. XG-102 was tested for its therapeutic potential in acute inflammatory bowel disease (IBD) in mice. Rectal instillation of the chemical irritant trinitrobenzene sulfonic acid (TNBS) provoked a dramatic acute inflammation in the colon of 7–9 weeks old mice. Coincident subcutaneous application of 100 µg/kg XG-102 significantly reduced the loss of body weight, rectal bleeding and diarrhoea. After 72 h, the end of the study, the colon was removed and immuno-histochemically analysed. XG-102 significantly reduced (i) pathological changes such as ulceration or crypt deformation, (ii) immune cell pathology such as infiltration and presence of CD3- and CD68-positive cells, (iii) the production of tumor necrosis factor (TNF)-α in colon tissue cultures from TNBS-treated mice, (iv) expression of Bim, Bax, FasL, p53, and activation of caspase 3, (v) complexation of JNK2 and Bim, and (vi) expression and activation of the JNK substrate and transcription factor c-Jun. A single application of subcutaneous XG-102 was at least as effective or even better depending on the outcome parameter as the daily oral application of sulfasalazine used for treatment of IBD
Focused Examination of the Intestinal lamina Propria Yields Greater Molecular Insight into Mechanisms Underlying SIV Induced Immune Dysfunction
Background: The Gastrointestinal (GI) tract is critical to AIDS pathogenesis as it is the primary site for viral transmission and a major site of viral replication and CD4 + T cell destruction. Consequently GI disease, a major complication of HIV/SIV infection can facilitate translocation of lumenal bacterial products causing localized/systemic immune activation leading to AIDS progression. Methodology/Principal Findings: To better understand the molecular mechanisms underlying GI disease we analyzed global gene expression profiles sequentially in the intestine of the same animals prior to and at 21 and 90d post SIV infection (PI). More importantly we maximized information gathering by examining distinct mucosal components (intraepithelial lymphocytes, lamina propria leukocytes [LPL], epithelium and fibrovascular stroma) separately. The use of sequential intestinal resections combined with focused examination of distinct mucosal compartments represents novel approaches not previously attempted. Here we report data pertaining to the LPL. A significant increase (61.7-fold) in immune defense/inflammation, cell adhesion/migration, cell signaling, transcription and cell division/differentiation genes were observed at 21 and 90d PI. Genes associated with the JAK-STAT pathway (IL21, IL12R, STAT5A, IL10, SOCS1) and T-cell activation (NFATc1, CDK6, Gelsolin, Moesin) were notably upregulated at 21d PI. Markedly downregulated genes at 21d PI included IL17D/IL27 and IL28B/IFNc3 (anti-HIV/viral), activation induced cytidine deaminase (B-cell function) an
Protein S-guanylation by the biological signal 8-nitroguanosine 3\u27,5\u27-cyclic monophosphate
The signaling pathway of nitric oxide (NO) depends mainly on guanosine 3′,5′-cyclic monophosphate (cGMP, 1). Here we report the formation and chemical biology of a nitrated derivative of cGMP, 8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP, 2), in NO-mediated signal transduction. Immunocytochemistry demonstrated marked 8-nitro-cGMP production in various cultured cells in an NO-dependent manner. This finding was confirmed by HPLC plus electrochemical detection and tandem mass spectrometry. 8-Nitro-cGMP activated cGMP-dependent protein kinase and showed unique redox-active properties independent of cGMP activity. Formation of protein Cys-cGMP adducts by 8-nitro-cGMP was identified as a new post-translational modification, which we call protein S-guanylation. 8-Nitro-cGMP seems to regulate the redox-sensor signaling protein Keap1, via S-guanylation of the highly nucleophilic cysteine sulfhydryls of Keap1. This study reveals 8-nitro-cGMP to be a second messenger of NO and sheds light on new areas of the physiology and chemical biology of signal transduction by NO
- …