75 research outputs found

    Can computed tomography differentiate adenocarcinoma in situ from minimally invasive adenocarcinoma?

    Get PDF
    Background: Given the subtle pathological signs of adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA), effective differentiation between the two entities is crucial. However, it is difficult to predict these conditions using preoperative computed tomography (CT) imaging. In this study, we investigated whether histological diagnosis of AIS and MIA using quantitative three-dimensional CT imaging analysis could be predicted. Methods: We retrospectively analyzed the images and histopathological findings of patients with lung cancer who were diagnosed with AIS or MIA between January 2017 and June 2018. We used Synapse Vincent (v. 4.3) (Fujifilm) software to analyze the CT attenuation values and performed a histogram analysis. Results: There were 22 patients with AIS and 22 with MIA. The ground-glass nodule (GGN) rate was significantly higher in patients with AIS (p < 0.001), whereas the solid volume (p < 0.001) and solid rate (p = 0.001) were significantly higher in those with MIA. The mean (p = 0.002) and maximum (p = 0.025) CT values were significantly higher in patients with MIA. The 25th, 50th, 75th, and 97.5th percentiles (all p < 0.05) for the CT values were significantly higher in patients with MIA. Conclusions: We demonstrated that quantitative analysis of 3D-CT imaging data using software can help distinguish AIS from MIA. These analyses are useful for guiding decision-making in the surgical management of early lung cancer, as well as subsequent follow-up

    Alteration of the immune environment in bone marrow from children with recurrent B cell precursor acute lymphoblastic leukemia

    Get PDF
    Due to the considerable success of cancer immunotherapy for leukemia, the tumor immune environment has become a focus of intense research; however, there are few reports on the dynamics of the tumor immune environment in leukemia. Here, we analyzed the tumor immune environment in pediatric B cell precursor acute lymphoblastic leukemia by analyzing serial bone marrow samples from nine patients with primary and recurrent disease by mass cytometry using 39 immunophenotype markers, and transcriptome analysis. High-dimensional single-cell mass cytometry analysis elucidated a dynamic shift of T cells from naïve to effector subsets, and clarified that, during relapse, the tumor immune environment comprised a T helper 1-polarized immune profile, together with an increased number of effector regulatory T cells. These results were confirmed in a validation cohort using conventional flow cytometry. Furthermore, RNA transcriptome analysis identified the upregulation of immune-related pathways in B cell precursor acute lymphoblastic leukemia cells during relapse, suggesting interaction with the surrounding environment. In conclusion, a tumor immune environment characterized by a T helper 1-polarized immune profile, with an increased number of effector regulatory T cells, could contribute to the pathophysiology of recurrent B cell precursor acute lymphoblastic leukemia. This information could contribute to the development of effective immunotherapeutic approaches against B cell precursor acute lymphoblastic leukemia relapse

    Identification of the ultrahigh-risk subgroup in neuroblastoma cases through DNA methylation analysis and its treatment exploiting cancer metabolism

    Get PDF
    神経芽腫の新たな診断法と治療戦略を創出 --がん細胞の生存戦略「がん代謝」を逆用する--. 京都大学プレスリリース. 2022-11-02.Neuroblastomas require novel therapies that are based on the exploitation of their biological mechanism. To address this need, we analyzed the DNA methylation and expression datasets of neuroblastomas, extracted a candidate gene characterizing the aggressive features, and conducted functional studies. Based on the DNA methylation data, we identified a subgroup of neuroblastoma cases with 11q loss of heterozygosity with extremely poor prognosis. PHGDH, a serine metabolism-related gene, was extracted as a candidate with strong expression and characteristic methylation in this subgroup as well as in cases with MYCN amplification. PHGDH inhibition suppressed neuroblastoma cell proliferation in vitro and in vivo, indicating that the inhibition of serine metabolism by PHGDH inhibitors is a therapeutic alternative for neuroblastoma. Inhibiting the arginine metabolism, which is closely related to serine metabolism using arginine deiminase, had a combination effect both in vitro and in vivo, especially on extracellular arginine-dependent neuroblastoma cells with ASS1 deficiency. Expression and metabolome analyses of post-dose cells confirmed the synergistic effects of treatments targeting serine and arginine indicated that xCT inhibitors that inhibit cystine uptake could be candidates for further combinatorial treatment. Our results highlight the rational therapeutic strategy of targeting serine/arginine metabolism for intractable neuroblastoma

    Coexistence of muscle atrophy and high subcutaneous adipose tissue radiodensity predicts poor prognosis in hepatocellular carcinoma

    Get PDF
    IntroductionWe aimed to assess the prognostic implications of muscle atrophy and high subcutaneous adipose tissue (SAT) radiodensity in patients with hepatocellular carcinoma (HCC).MethodsIn this retrospective study, muscle atrophy was assessed using the psoas muscle index (PMI) obtained from computed tomography. SAT radiodensity was evaluated based on radiodensity measurements. Survival and multivariate analyses were performed to identify factors associated with prognosis. The impact of muscle atrophy and high SAT radiodensity on prognosis was determined through survival analysis.ResultsA total of 201 patients (median age: 71 years; 76.6% male) with HCC were included. Liver cirrhosis was observed in 72.6% of patients, and the predominant Child–Pugh grade was A (77.1%). A total of 33.3% of patients exhibited muscle atrophy based on PMI values, whereas 12.9% had high SAT radiodensity. Kaplan–Meier survival analysis demonstrated that patients with muscle atrophy had significantly poorer prognosis than those without muscle atrophy. Patients with high SAT radiodensity had a significantly worse prognosis than those without it. Muscle atrophy, high SAT radiodensity, the Barcelona Clinic Liver Cancer class B, C, or D, and Child–Pugh score ≥ 6 were significantly associated with overall survival. Further classification of patients into four groups based on the presence or absence of muscle atrophy and high SAT radiodensity revealed that patients with both muscle atrophy and high SAT radiodensity had the poorest prognosis.ConclusionMuscle atrophy and high SAT radiodensity are significantly associated with poor prognosis in patients with HCC. Identifying this high-risk subgroup may facilitate the implementation of targeted interventions, including nutritional therapy and exercise, to potentially improve clinical outcomes
    corecore