58 research outputs found

    Ionic Effect on MD-SAXS Profile

    Get PDF

    All-Atom Molecular Dynamics Simulation of Multidrug Efflux Transporter AcrB

    Get PDF

    Role of the DELSEED Loop in Torque Transmission of F1-ATPase

    Get PDF
    AbstractF1-ATPase is an ATP-driven rotary motor that generates torque at the interface between the catalytic β-subunits and the rotor γ-subunit. The β-subunit inwardly rotates the C-terminal domain upon nucleotide binding/dissociation; hence, the region of the C-terminal domain that is in direct contact with γ—termed the DELSEED loop—is thought to play a critical role in torque transmission. We substituted all the DELSEED loop residues with alanine to diminish specific DELSEED loop-γ interactions and with glycine to disrupt the loop structure. All the mutants rotated unidirectionally with kinetic parameters comparable to those of the wild-type F1, suggesting that the specific interactions between DELSEED loop and γ is not involved in cooperative interplays between the catalytic β-subunits. Glycine substitution mutants generated half the torque of the wild-type F1, whereas the alanine mutant generated comparable torque. Fluctuation analyses of the glycine/alanine mutants revealed that the γ-subunit was less tightly held in the α3β3-stator ring of the glycine mutant than in the wild-type F1 and the alanine mutant. Molecular dynamics simulation showed that the DELSEED loop was disordered by the glycine substitution, whereas it formed an α-helix in the alanine mutant. Our results emphasize the importance of loop rigidity for efficient torque transmissions

    A novel magnetic resonance-based method to measure gene expression in living cells

    Get PDF
    In unicellular and multicellular eukaryotes, elaborate gene regulatory mechanisms facilitate a broad range of biological processes from cell division to morphological differentiation. In order to fully understand the gene regulatory networks involved in these biological processes, the spatial and temporal patterns of expression of many thousands of genes will need to be determined in real time in living organisms. Currently available techniques are not sufficient to achieve this goal; however, novel methods based on magnetic resonance (MR) imaging may be particularly useful for sensitive detection of gene expression in opaque tissues. This report describes a novel reporter gene system that monitors gene expression dynamically and quantitatively, in yeast cells, by measuring the accumulation of inorganic polyphosphate (polyP) using MR spectroscopy (MRS) or MR spectroscopic imaging (MRI). Because this system is completely non-invasive and does not require exogenous substrates, it is a powerful tool for studying gene expression in multicellular organisms, as well

    Structure of SARS-CoV-2 membrane protein essential for virus assembly

    Get PDF
    新型コロナウイルスのウイルス形成に必須の膜タンパク質の構造を解明. 京都大学プレスリリース. 2022-08-08.The coronavirus membrane protein (M) is the most abundant viral structural protein and plays a central role in virus assembly and morphogenesis. However, the process of M protein-driven virus assembly are largely unknown. Here, we report the cryo-electron microscopy structure of the SARS-CoV-2 M protein in two different conformations. M protein forms a mushroom-shaped dimer, composed of two transmembrane domain-swapped three-helix bundles and two intravirion domains. M protein further assembles into higher-order oligomers. A highly conserved hinge region is key for conformational changes. The M protein dimer is unexpectedly similar to SARS-CoV-2 ORF3a, a viral ion channel. Moreover, the interaction analyses of M protein with nucleocapsid protein (N) and RNA suggest that the M protein mediates the concerted recruitment of these components through the positively charged intravirion domain. Our data shed light on the M protein-driven virus assembly mechanism and provide a structural basis for therapeutic intervention targeting M protein

    Moving toward generalizable NZ-1 labeling for 3D structure determination with optimized epitope-tag insertion

    Get PDF
    タンパク質の抗体ラベリング技術を改良し、構造解析をアシスト --電子顕微鏡やX線結晶解析による構造決定を加速化--. 京都大学プレスリリース. 2021-04-20.Antibody labeling has been conducted extensively for structure determination using both X-ray crystallography and electron microscopy (EM). However, establishing target-specific antibodies is a prerequisite for applying antibody-assisted structural analysis. To expand the applicability of this strategy, an alternative method has been developed to prepare an antibody complex by inserting an exogenous epitope into the target. It has already been demonstrated that the Fab of the NZ-1 monoclonal antibody can form a stable complex with a target containing a PA12 tag as an inserted epitope. Nevertheless, it was also found that complex formation through the inserted PA12 tag inevitably caused structural changes around the insertion site on the target. Here, an attempt was made to improve the tag-insertion method, and it was consequently discovered that an alternate tag (PA14) could replace various loops on the target without inducing large structural changes. Crystallographic analysis demonstrated that the inserted PA14 tag adopts a loop-like conformation with closed ends in the antigen-binding pocket of the NZ-1 Fab. Due to proximity of the termini in the bound conformation, the more optimal PA14 tag had only a minor impact on the target structure. In fact, the PA14 tag could also be inserted into a sterically hindered loop for labeling. Molecular-dynamics simulations also showed a rigid structure for the target regardless of PA14 insertion and complex formation with the NZ-1 Fab. Using this improved labeling technique, negative-stain EM was performed on a bacterial site-2 protease, which enabled an approximation of the domain arrangement based on the docking mode of the NZ-1 Fab

    タンパク質構造変化の理論:平衡ゆらぎと線形応答理論

    No full text

    All-Atom Molecular Dynamics Simulation of Bacterial Multidrug Efflux Transporters AcrB

    Get PDF
    corecore