482 research outputs found
Ultrafast nematic-orbital excitation in FeSe
The electronic nematic phase is an unconventional state of matter that
spontaneously breaks the rotational symmetry of electrons. In
iron-pnictides/chalcogenides and cuprates, the nematic ordering and
fluctuations have been suggested to have as-yet-unconfirmed roles in
superconductivity. However, most studies have been conducted in thermal
equilibrium, where the dynamical property and excitation can be masked by the
coupling with the lattice. Here we use femtosecond optical pulse to perturb the
electronic nematic order in FeSe. Through time-, energy-, momentum- and
orbital-resolved photo-emission spectroscopy, we detect the ultrafast dynamics
of electronic nematicity. In the strong-excitation regime, through the
observation of Fermi surface anisotropy, we find a quick disappearance of the
nematicity followed by a heavily-damped oscillation. This short-life nematicity
oscillation is seemingly related to the imbalance of Fe 3dxz and dyz orbitals.
These phenomena show critical behavior as a function of pump fluence. Our
real-time observations reveal the nature of the electronic nematic excitation
instantly decoupled from the underlying lattice
Stand structure and dynamics during a 16-year period in a sub-boreal conifer-hardwood mixed forest, northern Japan
ArticleFOREST ECOLOGY AND MANAGEMENT. 174(1-3):39-50(2003)journal articl
Interstellar Gas and X-rays toward the Young Supernova Remnant RCW 86; Pursuit of the Origin of the Thermal and Non-Thermal X-ray
We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3
mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to
identify the interstellar medium with which the shock waves of the SNR
interact. We have found an HI intensity depression in the velocity range
between and km s toward the SNR, suggesting a cavity in the
interstellar medium. The HI cavity coincides with the thermal and non-thermal
emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI
distribution, which indicates a strong density gradient, while the non-thermal
X-rays are found toward the less dense, inner part of the HI cavity. The most
significant non-thermal X-rays are seen toward the southwestern part of the
shell where the HI gas traces the dense and cold component. We also identified
CO clouds which are likely interacting with the SNR shock waves in the same
velocity range as the HI, although the CO clouds are distributed only in a
limited part of the SNR shell. The most massive cloud is located in the
southeastern part of the shell, showing detailed correspondence with the
thermal X-rays. These CO clouds show an enhanced CO = 2-1/1-0 intensity
ratio, suggesting heating/compression by the shock front. We interpret that the
shock-cloud interaction enhances non-thermal X-rays in the southwest and the
thermal X-rays are emitted by the shock-heated gas of density 10-100 cm.
Moreover, we can clearly see an HI envelope around the CO cloud, suggesting
that the progenitor had a weaker wind than the massive progenitor of the
core-collapse SNR RX J1713.73949. It seems likely that the progenitor of RCW
86 was a system consisting of a white dwarf and a low-mass star with
low-velocity accretion winds.Comment: 19 pages, 15 figures, 4 tables, accepted for publication in Journal
of High Energy Astrophysics (JHEAp
Observation of local atomic displacements intrinsic to the double zigzag chain structure of 1T-MTe2 (M = V, Nb, Ta)
We describe the existence of local distortion discovered in the synchrotron
x-ray single-crystal structure analysis of layered ditelluride 1T-MTe2 (M = V,
Nb, Ta). In 1T-TaTe2, the double zigzag chain structure of Ta is deformed at
about 170 K, and heptamer molecules are formed periodically at low
temperatures. We found that some of the Ta atoms that compose the double zigzag
chain structure appearing at high temperatures are locally displaced, resulting
in local dimerization. This tendency weakens when Ta is replaced by V or Nb.
Our results indicate that the local distortion persistently survives in these
ditellurides, where the electronic degrees of freedom, including orbitals, are
weakened. We further discuss the origin of local distortion in these
ditellurides, which is different from many usual material systems where
molecular formation occurs at low temperatures.Comment: 11 pages, 4 figures, 18 tables, To be published in Phys. Rev.
- …