126 research outputs found

    The First Comprehensive Single-Cell Atlas of Human Teeth

    Full text link

    Researchers Complete Atlas of Single Cells That Make Up Human Teeth

    Full text link

    Comprehensive single-cell atlas of human teeth

    Full text link
    During the last 30 years, medical and dental research has attracted a large number of scientists and practitioners working on aspects of high medical relevance that involve a combination of genetic and tissue regeneration approaches. These developments in stem cell and tissue engineering have provided medical and dental researchers with new insights and given rise to new ideas as to how everyday clinical practice can be improved. Many research groups are dealing with questions like: How can we help injured tissues and organs heal? Can lost tissue be regenerated? How can we create solid protocols that apply across all stem cell therapies

    Den Geheimnissen der Zahnentwicklung auf der Spur

    Full text link

    Emerging Trends and Promises in Orofacial Cancers

    Get PDF

    Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

    Get PDF
    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues

    Modern Trends in Dental Medicine: An Update for Internists

    Full text link
    Traumatic injuries, genetic diseases, and external harmful agents such as bacteria and acids often compromise tooth integrity. There is an unmet medical need to develop alternative, innovative dental treatments that complement traditional restorative and surgery techniques. Stem cells have transformed the medical field in recent years. The combination of stem cells with bioactive scaffolds and nanostructured materials turns out to be increasingly beneficial in regenerative dental medicine. Stem cell-based regenerative approaches for the formation of dental tissues will significantly improve treatments and will have a major impact in dental practice. To date there is no established and reliable stem cell-based treatment translated into the dental clinics, however, the advances and improved technological knowledge are promising for successful dental therapies in the near future. Here, we review some of the contemporary challenges in dental medicine and describe the benefits and future possibilities of certain novel approaches in the emerging field of regenerative dentistry

    Innovative dental stem cell-based research approaches: the future of dentistry

    Full text link
    Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistr
    corecore