717 research outputs found

    Researchers Complete Atlas of Single Cells That Make Up Human Teeth

    Full text link

    The First Comprehensive Single-Cell Atlas of Human Teeth

    Full text link

    Comprehensive single-cell atlas of human teeth

    Full text link
    During the last 30 years, medical and dental research has attracted a large number of scientists and practitioners working on aspects of high medical relevance that involve a combination of genetic and tissue regeneration approaches. These developments in stem cell and tissue engineering have provided medical and dental researchers with new insights and given rise to new ideas as to how everyday clinical practice can be improved. Many research groups are dealing with questions like: How can we help injured tissues and organs heal? Can lost tissue be regenerated? How can we create solid protocols that apply across all stem cell therapies

    Den Geheimnissen der Zahnentwicklung auf der Spur

    Full text link

    Editorial - Brothers in arms: regenerative biology and dentistry

    Full text link
    The eCM special issue on Dental Regenerative Biology concentrates on recent key developments that will probably soon lead to significantly improved dental treatments. Progress in the understanding of the biology and technology involved provides exciting new clinical approaches to repairing and regenerating missing or damaged dental tissues. The application of stem cells has the potential to improve tissue regeneration and the use of significantly improved biomaterials can aid dental tissue healing. This editorial highlights the importance of merging the various biological and technological disciplines in order to obtain novel state-of-the-art products and generating new and original clinical concepts

    Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

    Get PDF
    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues
    corecore