106 research outputs found

    Pre-mRNA splicing manipulation via Antisense Oligomers

    Get PDF
    Duchenne muscular dystrophy (DMD), the most common lethal neuromuscular disease in childhood, arises from protein-truncating mutations in the dystrophin gene. A deficiency in dystrophin leads to loss of the dystrophin associated protein complex (DAPC), which in turn, renders muscle fibres vulnerable to injury, and eventually leads to muscle loss, necrosis and fibrosis. Although, the dystrophin gene was identified nearly two decades ago, and extensive research has been directed at finding a therapy for DMD, to date, there is still no effective treatment available. One promising molecular approach to treat DNID is antisense oligomer (AO) induced splice intervention. AOs were most widely used to induce RNaseH-mediated gene transcript degradation, however, the development of different backbone chemistries heralds a new generation of AOs that can modify gene transcript splicing patterns. Application of AOs to the dystrophin pre-mRNA to influence exon selection and induce shortened, in-frame dystrophin isoforms is being vigorously pursued. The majority of the work presented here explores the concept of personalised therapies for DMD, whereby oligomers are designed to specifically target individual mutations. The importance of AO-optimisation to obtain AOs capable of inducing efficient dual exon skipping in an established animal model of muscular dystrophy (4CV mouse), which carries a DMD-causing mutation in exon 53, is demonstrated. Removal of both exons 52 and 53 was required to by-pass the mutation, maintain the reading frame and restore dystrophin expression. One of the major challenges of AO-induced splice intervention for therapeutic purposes will be the design and development of clinically relevant oligomers for many different mutations. Various models, including cells transfected with artificial constructs and mice carrying a human dystrophin transgene, have been proposed as tools to facilitate oligomer design for splice manipulation. This thesis investigates the relevance of using mouse models to design AOs for human application, and also explores the use of cultured human myoblasts, from both unaffected humans and a DMD patient, as a means of establishing the most effective therapeutic compound. In addition to induction of exon skipping, the applicability of AOs to promote exon inclusion, by masking possible intronic silencing motifs of survival motor neuron (SMN) pre-mRNA in cultured fibroblasts from a spinal muscular atrophy (SMA) patient, is investigated. This study provides additional information about a novel oligomer target site that could be used in combination with previously identified splice silencing motifs for a molecular therapeutic approach to SMA, and may perhaps open up new avenues of treatment for other genetic disorders, where oIigomers could be used to induce exon inclusion

    An application of wiretap channels with side information

    Get PDF
    Information hiding erfordert nicht nur die Geheimhaltung einer Information, sonderern auch der Kommunikation. Im Allgemeinen kann die Information durch kryptohgraphische Verfahren geschützt werden, allerdings kann gerade die Übertragung verschlüsselter Daten die Aufmerksamkeit eines Angreifers wecken und erst so zu einer kryprographischen Attacke führen. Eine geheime Kommunikation wird in der Praxis meist realisiert, indem die Information in einem Medium wie einem Bild oder einer Publikation versteckt wird. In dieser Dissertation wird das Problem des Information-Hiding aus dem Blickwinkel der Informationstheorie untersucht. Dazu wird der Ansatz der Code-Partitionierung verfolgt, der bereits erfolgreich zur Lösung vieler klassischer Probleme wie der Bestimmung von erreichbaren Gebieten für den Broadcast-Kanal, den Abhör-Kanal und anderer Kanäle mit Zusatzinformation eingesetzt wurde. In dieser Arbeit wird die Code-Partitionierung zur Ableitung erreichbare Gebiete auf zwei neue Kanalmodelle angewendet: den Gauss-Abhör Kanal mit Zusatzinformation und dem Abhör-Kanal II mit Zusatzinformation. Im ersten Fall wird untersucht, wie die Zusatzinformation beim Sender für eine effiziente Codierung genutzt werden kann. Für das zweite Modell wird untersucht, wie sich einem Angreifer bekannte Zusatzinformationen über die geheimen Daten auf den Systementwurf auswirken. Für den Gauss-Abhör Kanal werden sog. Leck-Funktionen definiert, die den Kanal bzw. die Art der Zusatzinformation genauer charakterisieren. Für Kanäle mit unterschiedlicher Charakteristik werden drei Betriebsmodi vorgeschlagen, unter denen sich eine verdeckte Kommunikation mit asymptotisch perfekter Sicherheit betreiben lässt. Basierend auf diesen Modi werden erreichbare Gebiete für den Gauss-Abhör Kanal mit Zusatzinformation abgeleitet. Der Gauss-Abhör Kanal mit Zusatzinformation findet eine direkte Anwendung beim Information-Hiding in einem Bild. Es kann gezeigt werden, dass eine Schlüssel-basierte Implementierung des Modells äquivalent zu einer einfachen Erweiterung des bekannten Verfahrens für digitale Wasserzeichen nach der Quantisierungsmethode ist. Eine vielversprechende experimentelle Studie zeigt, dass sich in einem Graustufenbild bei hoher Sicherheit und nur geringer Degradation der Bildqualität eine signifikante Menge von Binärdaten verstecken lässt (1 bit pro pixel). Zur Analyse des Abhör-Kanal II mit Zusatzinformation wird das erweiterte Konzept des Inversen-Relativen-Dimension/Längen Profils eingesetzt. Es wird untersucht, wie sich Zusatzinformation beim Angreifer über die geheimen Daten auf den Systementwurf auswirken. Dazu werden charakteristika guter Binärcodes für diesen Kanal abgeleitet. Darüberhinaus definieren wir für den Abhör-Kanal II mit und ohne Zusatzinformtaion eine Klasse von Codes finiter Länge, die bei einer Beschränkung der erlaubten Datenrate die grösst mögliche Robustheit gegen eine Attacke bietet. Basierend auf der Codierungsstrategie leiten wir dann für den Kanal mit Zusatzinformation erreichbare Gebiete ab

    Consequences of making the inactive active through changes in antisense oligonucleotide chemistries

    Get PDF
    Antisense oligonucleotides are short, single-stranded nucleic acid analogues that can interfere with pre-messenger RNA (pre-mRNA) processing and induce excision of a targeted exon from the mature transcript. When developing a panel of antisense oligonucleotides to skip every dystrophin exon, we found great variation in splice switching efficiencies, with some antisense oligonucleotides ineffective, even when directed to canonical splice sites and transfected into cells at high concentrations. In this study, we re-evaluated some of these ineffective antisense oligonucleotide sequences after incorporation of locked nucleic acid residues to increase annealing potential. Antisense oligonucleotides targeting exons 16, 23, and 51 of human DMD transcripts were synthesized as two different chemistries, 2 '-O-methyl modified bases on a phosphorothioate backbone or mixmers containing several locked nucleic acid residues, which were then transfected into primary human myotubes, and DMD transcripts were analyzed for exon skipping. The ineffective 2 '-O-methyl modified antisense oligonucleotides induced no detectable exon skipping, while all corresponding mixmers did induce excision of the targeted exons. Interestingly, the mixmer targeting exon 51 induced two unexpected transcripts arising from partial skipping of exon 51 with retention of 95 or 188 bases from the 5 ' region of exon 51. These results indicated that locked nucleic acid/2 '-O-methyl mixmers are more effective at inducing exon skipping, however, this improvement may come at the cost of activating alternative cryptic splice sites and off-target effects on gene expression

    Antisense oligonucleotide induction of the hnRNPA1b isoform affects pre-mRNA splicing of SMN2 in SMA type I fibroblasts

    Get PDF
    Spinal muscular atrophy (SMA) is a severe, debilitating neuromuscular condition characterised by loss of motor neurons and progressive muscle wasting. SMA is caused by a loss of expression of SMN1 that encodes the survival motor neuron (SMN) protein necessary for the survival of motor neurons. Restoration of SMN expression through increased inclusion of SMN2 exon 7 is known to ameliorate symptoms in SMA patients. As a consequence, regulation of pre-mRNA splicing of SMN2 could provide a potential molecular therapy for SMA. In this study, we explored if splice switching antisense oligonucleotides could redirect the splicing repressor hnRNPA1 to the hnRNPA1b isoform and restore SMN expression in fibroblasts from a type I SMA patient. Antisense oligonucleotides (AOs) were designed to promote exon 7b retention in the mature mRNA and induce the hnRNPA1b isoform. RT-PCR and western blot analysis were used to assess and monitor the efficiency of different AO combinations. A combination of AOs targeting multiple silencing motifs in hnRNPA1 pre-mRNA led to robust hnRNPA1b induction, which, in turn, significantly increased expression of full-length SMN (FL-SMN) protein. A combination of PMOs targeting the same motifs also strongly induced hnRNPA1b isoform, but surprisingly SMN2 exon 5 skipping was detected, and the PMO cocktail did not lead to a significant increase in expression of FL-SMN protein. We further performed RNA sequencing to assess the genome-wide effects of hnRNPA1b induction. Some 3244 genes were differentially expressed between the hnRNPA1b-induced and untreated SMA fibroblasts, which are functionally enriched in cell cycle and chromosome segregation processes. RT-PCR analysis demonstrated that expression of the master regulator of these enrichment pathways, MYBL2 and FOXM1B, were reduced in response to PMO treatment. These findings suggested that induction of hnRNPA1b can promote SMN protein expression, but not at sufficient levels to be clinically relevant

    MTAP-related increased erythroblast proliferation as a mechanism of polycythaemia vera

    Get PDF
    Polycythaemia vera (PV) is a haematological disorder caused by an overproduction of erythroid cells. To date, the molecular mechanisms involved in the disease pathogenesis are still ambiguous. This study aims to identify aberrantly expressed proteins in erythroblasts of PV patients by utilizing mass spectrometry-based proteomic analysis. Haematopoietic stem cells (HSCs) were isolated from newly-diagnosed PV patients, PV patients who have received cytoreductive therapy, and healthy subjects. In vitro erythroblast expansion confirmed that the isolated HSCs recapitulated the disease phenotype as the number of erythroblasts from newly-diagnosed PV patients was significantly higher than those from the other groups. Proteomic comparison revealed 17 proteins that were differentially expressed in the erythroblasts from the newly-diagnosed PV patients compared to those from healthy subjects, but which were restored to normal levels in the patients who had received cytoreductive therapy. One of these proteins was S-methyl-5′-thioadenosine phosphorylase (MTAP), which had reduced expression in PV patients’ erythroblasts. Furthermore, MTAP knockdown in normal erythroblasts was shown to enhance their proliferative capacity. Together, this study identifies differentially expressed proteins in erythroblasts of healthy subjects and those of PV patients, indicating that an alteration of protein expression in erythroblasts may be crucial to the pathology of PV

    Marginal Level Dystrophin Expression Improves Clinical Outcome in a Strain of Dystrophin/Utrophin Double Knockout Mice

    Get PDF
    Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx) mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD) patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv) mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies

    Antisense PMO Found in Dystrophic Dog Model Was Effective in Cells from Exon 7-Deleted DMD Patient

    Get PDF
    BACKGROUND: Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD). We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO) targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J)) lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. METHODOLOGY/PRINCIPAL FINDINGS: We converted fibroblasts of CXMD(J) and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMD(J) and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. CONCLUSION/SIGNIFICANCE: Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans

    Antisense oligonucleotide mediated terminal intron retention of the SMN2 transcript

    Get PDF
    The severe childhood disease spinal muscular atrophy (SMA) arises from the homozygous loss of the survival motor neuron 1 gene (SMN1). A homologous gene potentially encoding an identical protein, SMN2 can partially compensate for the loss of SMN1, however the exclusion of a critical exon in the coding region during mRNA maturation results in insufficient levels of functional protein. The rate of transcription is known to influence the alternative splicing of gene transcripts, with a fast transcription rate correlating to an increase in alternative splicing. Conversely, a slower transcription rate is more likely to result in the inclusion of all exons in the transcript. Targeting SMN2 with antisense oligonucleotides to influence the processing of terminal exon 8 could be a way to slow transcription and induce the inclusion of exon 7. Interestingly, following oligomer treatment of SMA patient fibroblasts, we observed the inclusion of exon 7 as well as intron 7 in the transcript. Since the normal termination codon is located in exon 7, this exon/intron7-SMN2 transcript should encode the normal protein, and only carry a longer 3´ untranslated region. Further studies showed the extra 3´UTR length contained a number of regulatory motifs that modify transcript and protein regulation, leading to translational repression of SMN. While unlikely to provide therapeutic benefit for spinal muscular atrophy patients, this novel technique for gene regulation could provide another avenue for the repression of undesirable gene expression in a variety of other diseases

    Antisense oligonucleotide induction of progerin in human myogenic cells

    Get PDF
    We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene ( LMNA) transcript in human myogenic cells. The progerin transcript (LMNA Δ150) lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS). HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2′-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model to investigate the role of progerin in premature muscle ageing
    • …
    corecore